您的位置:首页 > 其它

ernel 3.10内核源码分析--KVM相关--虚拟机运行

2015-11-19 17:17 1541 查看
1、基本原理

KVM虚拟机通过字符设备/dev/kvm的ioctl接口创建和运行,相关原理见之前的文章说明。

虚拟机的运行通过/dev/kvm设备ioctl VCPU接口的KVM_RUN指令实现,在VM和VCPU创建好并完成初始化后,就可以调度该虚拟机运行了,通常,一个VCPU对应于一个线程,虚拟机运行的本质为调度该虚拟机相关的VCPU所在线程运行。虚拟机(VCPU)的运行主要任务是要进行上下文切换,上下文主要包括相关寄存器、APIC状态、TLB等,通常上下文切换的过程如下:

1、 保存当前的上下文。

2、 使用kvm_vcpu结构体中的上下文信息,加载到物理CPU中。

3、 执行kvm_x86_ops中的run_vcpu函数,调用硬件相关的指令(如VMLAUNCH),进入虚拟机运行环境中。

虚拟机运行于qemu-kvm的进程上下文中,从硬件的角度看,虚拟机的运行过程,实质为相关指令的执行过程,虚拟机编译后的也就是相应的CPU指令序列,而虚拟机的指令跟Host机的指令执行过程并没有太多的差别,最关键的差别为“敏感指令”(通常为IO、内存等关键操作)的执行,这也是虚拟化实现的本质所在,当在虚拟机中(Guest模式)执行“敏感指令”时,会触发(由硬件触发)VM-exit,使当前CPU从Guest模式(non-root模式)切换到root模式,当前CPU的控制权随之转交给VMM(Hypervisor,KVM中即Host),由VMM进行相应的处理,处理完成后再次通过应该硬件指令(如VMLAUNCH),重新进入到Guest模式,从而进入虚拟机运行环境中继续运行。

本文简单解释及分析在3.10版本内核代码中的相关流程,用户态qemu-kvm部分暂不包括。

2、大致流程:

Qemu-kvm可以通过ioctl(KVM_RUN…)使虚拟机运行,最终进入内核态,由KVM相关内核流程处理,在内核态执行的大致过程如下:

kvm_vcpu_ioctl -->

kvm_arch_vcpu_ioctl_run

具体由内核函数kvm_arch_vcpu_ioctl_run完成相关工作。主要流程如下:

1、 Sigprocmask()屏蔽信号,防止在此过程中受到信号的干扰。

2、 设置当前VCPU状态为KVM_MP_STATE_UNINITIALIZED

3、 配置APIC和mmio相关信息

4、 将VCPU中保存的上下文信息写入指定位置

5、 然后的工作交由__vcpu_run完成

6、 __vcpu_run最终调用vcpu_enter_guest,该函数实现了进入Guest,并执行Guest
OS具体指令的操作。

7、 vcpu_enter_guest最终调用kvm_x86_ops中的run函数运行。对应于Intel平台,该函数为vmx_vcpu_run(设置Guest
CR3和其他寄存器、EPT/影子页表相关设置、汇编代码VMLAUNCH切换到非根模式,执行Guest目标代码)。

8、 Guest代码执行到敏感指令或因其他原因(比如中断/异常),VM-Exit退出非根模式,返回到vcpu_enter_guest函数继续执行。

9、 vcpu_enter_guest函数中会判断VM-Exit原因,并进行相应处理。

10、处理完成后VM-Entry到Guest重新执行Guest代码,或重新等待下次调度。

3、代码分析

kvm_vcpu_ioctl():

点击(此处)折叠或打开

/*

* kvm
ioctl VCPU指令的入口,传入的fd为KVM_CREATE_VCPU中返回的fd。

* 主要针对具体的VCPU进行参数设置。如:相关寄存器的读

* 写、中断控制等

*/

static long kvm_vcpu_ioctl(struct file *filp,

unsigned int ioctl, unsigned
long arg)

{

struct kvm_vcpu *vcpu = filp->private_data;

void __user *argp = (void
__user *)arg;

int r;

struct kvm_fpu *fpu = NULL;

struct kvm_sregs *kvm_sregs = NULL;

if (vcpu->kvm->mm != current->mm)

return -EIO;

#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)

/*

* Special
cases: vcpu ioctls that are asynchronous to vcpu execution,

* so
vcpu_load() would
break it.

*/

if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)

return kvm_arch_vcpu_ioctl(filp, ioctl, arg);

#endif

// KVM虚拟机VCPU数据结构载入物理CPU

r = vcpu_load(vcpu);

if (r)

return r;

switch (ioctl) {

/*

* 运行虚拟机,最终通过执行VMLAUNCH指令进入non
root模式,

* 进入虚拟机运行。当虚拟机内部执行敏感指令时,由硬

* 件触发VM-exit,返回到root模式

*/

case KVM_RUN:

r = -EINVAL;

// 不能带参数。

if (arg)

goto out;

// 运行VCPU(即运行虚拟机)的入口函数

r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);

trace_kvm_userspace_exit(vcpu->run->exit_reason, r);

break;

...

kvm_vcpu_ioctl()-->kvm_arch_vcpu_ioctl_run()-->__vcpu_run():

点击(此处)折叠或打开

static int __vcpu_run(struct
kvm_vcpu *vcpu)

{

int r;

struct kvm *kvm = vcpu->kvm;

vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);

/*设置vcpu->arch.apic->vapic_page*/

r = vapic_enter(vcpu);

if (r) {

srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);

return r;

}

r = 1;

while (r > 0) {

/*检查状态*/

if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&

!vcpu->arch.apf.halted)

/* 进入Guest模式,最终通过VMLAUNCH指令实现*/

r = vcpu_enter_guest(vcpu);

else {/*什么情况下会走到这里?*/

srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);

/*阻塞VCPU,其实就是schddule()调度出去,但在有特殊情况时(比如有挂起的定时器或信号时),不进行调度而直接退出*/

kvm_vcpu_block(vcpu);

vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);

if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {

kvm_apic_accept_events(vcpu);

switch(vcpu->arch.mp_state) {

case KVM_MP_STATE_HALTED:

vcpu->arch.pv.pv_unhalted = false;

vcpu->arch.mp_state =

KVM_MP_STATE_RUNNABLE;

case KVM_MP_STATE_RUNNABLE:

vcpu->arch.apf.halted = false;

break;

case KVM_MP_STATE_INIT_RECEIVED:

break;

default:

r = -EINTR;

break;

}

}

}

if (r <= 0)

break;

clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);

if (kvm_cpu_has_pending_timer(vcpu))

kvm_inject_pending_timer_irqs(vcpu);

if (dm_request_for_irq_injection(vcpu)) {

r = -EINTR;

vcpu->run->exit_reason = KVM_EXIT_INTR;

++vcpu->stat.request_irq_exits;

}

kvm_check_async_pf_completion(vcpu);

if (signal_pending(current)) {

r = -EINTR;

vcpu->run->exit_reason = KVM_EXIT_INTR;

++vcpu->stat.signal_exits;

}

/*这是kvm中的一个调度时机点,即选择新VCPU运行的时机点*/

if (need_resched()) {

srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);

kvm_resched(vcpu);

vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);

}

}

srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);

vapic_exit(vcpu);

return r;

}

kvm_vcpu_ioctl()-->kvm_arch_vcpu_ioctl_run()-->__vcpu_run()-->vcpu_enter_guest():

点击(此处)折叠或打开

/* 进入Guest模式,最终通过VMLAUNCH指令实现*/

static int vcpu_enter_guest(struct
kvm_vcpu *vcpu)

{

int r;

bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&

vcpu->run->request_interrupt_window;

bool req_immediate_exit = false;

/*进入Guest模式前先处理相关挂起的请求*/

if (vcpu->requests) {

/*卸载MMU*/

if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))

kvm_mmu_unload(vcpu);

/*定时器迁移*/

if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))

__kvm_migrate_timers(vcpu);

/*主时钟更新*/

if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))

kvm_gen_update_masterclock(vcpu->kvm);

/*全局时钟更新*/

if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))

kvm_gen_kvmclock_update(vcpu);

/*虚拟机时钟更新*/

if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {

r = kvm_guest_time_update(vcpu);

if (unlikely(r))

goto out;

}

/*更新mmu*/

if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))

kvm_mmu_sync_roots(vcpu);

/*刷新TLB*/

if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))

kvm_x86_ops->tlb_flush(vcpu);

if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {

vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;

r = 0;

goto out;

}

if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {

vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;

r = 0;

goto out;

}

if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {

vcpu->fpu_active = 0;

kvm_x86_ops->fpu_deactivate(vcpu);

}

if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {

/* Page is swapped
out. Do synthetic
halt */

vcpu->arch.apf.halted = true;

r = 1;

goto out;

}

if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))

record_steal_time(vcpu);

if (kvm_check_request(KVM_REQ_NMI, vcpu))

process_nmi(vcpu);

if (kvm_check_request(KVM_REQ_PMU, vcpu))

kvm_handle_pmu_event(vcpu);

if (kvm_check_request(KVM_REQ_PMI, vcpu))

kvm_deliver_pmi(vcpu);

if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))

vcpu_scan_ioapic(vcpu);

}

// 检查是否有事件请求

if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {

kvm_apic_accept_events(vcpu);

if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {

r = 1;

goto out;

}

// 注入阻塞的事件,中断,异常和nmi等

inject_pending_event(vcpu);

/* enable
NMI/IRQ window open
exits if needed */

/*

* 使能NMI/IRQ
window,参见Intel64 System Programming Guide 25.3节

* 当使能了interrupt-window exiting或NMI-window exiting(由VMCS中相关字段控制),

* 表示在刚进入虚拟机后,就会立刻因为有pending或注入的中断导致VM-exit

*/

if (vcpu->arch.nmi_pending)

req_immediate_exit =

kvm_x86_ops->enable_nmi_window(vcpu) != 0;

else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)

req_immediate_exit =

kvm_x86_ops->enable_irq_window(vcpu) != 0;

if (kvm_lapic_enabled(vcpu)) {

/*

* Update
architecture specific hints for APIC

* virtual
interrupt delivery.

*/

if (kvm_x86_ops->hwapic_irr_update)

kvm_x86_ops->hwapic_irr_update(vcpu,

kvm_lapic_find_highest_irr(vcpu));

update_cr8_intercept(vcpu);

kvm_lapic_sync_to_vapic(vcpu);

}

}

// 装载MMU,待深入分析

r = kvm_mmu_reload(vcpu);

if (unlikely(r)) {

goto cancel_injection;

}

preempt_disable();

// 进入Guest前期准备,架构相关

kvm_x86_ops->prepare_guest_switch(vcpu);

if (vcpu->fpu_active)

kvm_load_guest_fpu(vcpu);

kvm_load_guest_xcr0(vcpu);

vcpu->mode = IN_GUEST_MODE;

/* We
should set ->mode
before check ->requests,

* see
the comment in make_all_cpus_request.

*/

smp_mb();

local_irq_disable();

/*

* 如果VCPU处于EXITING_GUEST_MODE或者vcpu->requests(?)或者需要调度或者

* 有挂起的信号,则放弃

*/

if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests

|| need_resched() || signal_pending(current)) {

vcpu->mode = OUTSIDE_GUEST_MODE;

smp_wmb();

local_irq_enable();

preempt_enable();

r = 1;

goto cancel_injection;

}

srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);

// req_immediate_exit在前面使能NMI/IRQ
window失败时设置,此时需要立即退出,触发重新调度

if (req_immediate_exit)

smp_send_reschedule(vcpu->cpu);

// 计算虚拟机的enter时间

kvm_guest_enter();

// 调试相关

if (unlikely(vcpu->arch.switch_db_regs)) {

set_debugreg(0, 7);

set_debugreg(vcpu->arch.eff_db[0], 0);

set_debugreg(vcpu->arch.eff_db[1], 1);

set_debugreg(vcpu->arch.eff_db[2], 2);

set_debugreg(vcpu->arch.eff_db[3], 3);

}

trace_kvm_entry(vcpu->vcpu_id);

// 调用架构相关的run接口(vmx_vcpu_run),进入Guest模式

kvm_x86_ops->run(vcpu);

// 此处开始,说明已经发生了VM-exit,退出了Guest模式

/*

* If the
guest has used debug registers, at least dr7

* will
be disabled while returning to the
host.

* If we
don't have active breakpoints in the
host, we don't

* care
about the messed up debug address registers. But if

* we
have some of them active, restore the old state.

*/

if (hw_breakpoint_active())

hw_breakpoint_restore();

/*记录Guest退出前的TSC时钟*/

vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,

native_read_tsc());

// 设置模式

vcpu->mode = OUTSIDE_GUEST_MODE;

smp_wmb();

/* Interrupt is enabled
by handle_external_intr() */

kvm_x86_ops->handle_external_intr(vcpu);

++vcpu->stat.exits;

/*

* We
must have an instruction between local_irq_enable() and

* kvm_guest_exit(), so
the timer interrupt isn't delayed by

* the
interrupt shadow. The stat.exits
increment will do nicely.

* But
we need to prevent reordering, hence
this barrier():

*/

barrier();

// 计算虚拟机的退出时间,其中还开中断了?

kvm_guest_exit();

preempt_enable();

vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

/*

* Profile
KVM exit RIPs:

*/

// Profile(采样计数,用于性能分析和调优)相关

if (unlikely(prof_on == KVM_PROFILING)) {

unsigned long rip = kvm_rip_read(vcpu);

profile_hit(KVM_PROFILING, (void *)rip);

}

if (unlikely(vcpu->arch.tsc_always_catchup))

kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);

if (vcpu->arch.apic_attention)

kvm_lapic_sync_from_vapic(vcpu);

/*

* 调用vmx_handle_exit()处理虚拟机异常,异常原因及其它关键信息

* 已经在之前获取。

*/

r = kvm_x86_ops->handle_exit(vcpu);

return r;

cancel_injection:

kvm_x86_ops->cancel_injection(vcpu);

if (unlikely(vcpu->arch.apic_attention))

kvm_lapic_sync_from_vapic(vcpu);

out:

return r;

}

kvm_vcpu_ioctl()-->kvm_arch_vcpu_ioctl_run()-->__vcpu_run()-->vcpu_enter_guest()-->vmx_vcpu_run():

点击(此处)折叠或打开

/*

* 运行虚拟机,进入Guest模式,即non
root模式

*/

static void __noclone vmx_vcpu_run(struct
kvm_vcpu *vcpu)

{

struct vcpu_vmx *vmx = to_vmx(vcpu);

unsigned long debugctlmsr;

/* Record
the guest's net vcpu time for enforced
NMI injections. */

// nmi注入?跟nmi_watchdog相关?

if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))

vmx->entry_time = ktime_get();

/* Don't
enter VMX if guest state is invalid, let the exit handler

start emulation until we
arrive back to a valid state */

if (vmx->emulation_required)

return;

if (vmx->nested.sync_shadow_vmcs) {

copy_vmcs12_to_shadow(vmx);

vmx->nested.sync_shadow_vmcs = false;

}

// 写入Guest的RSP寄存器信息至VMCS相关位置中

if (test_bit(VCPU_REGS_RSP, (unsigned
long *)&vcpu->arch.regs_dirty))

vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);

// 写入Guest的RIP寄存器信息至VMCS相关位置中

if (test_bit(VCPU_REGS_RIP, (unsigned
long *)&vcpu->arch.regs_dirty))

vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);

/* When
single-stepping over STI and MOV
SS, we must clear the

* corresponding
interruptibility bits in the guest state. Otherwise

* vmentry
fails as it then expects bit 14 (BS) in pending
debug

* exceptions
being set, but
that's not correct for the
guest debugging

* case. */

// 单步调试时,需要禁用Guest中断

if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)

vmx_set_interrupt_shadow(vcpu, 0);

atomic_switch_perf_msrs(vmx);

debugctlmsr = get_debugctlmsr();

// vmx->__launched用于判断当前VCPU是否已经VMLAUNCH了

vmx->__launched = vmx->loaded_vmcs->launched;

// 执行VMLAUNCH指令进入Guest模式,虚拟机开始运行

asm(

/* Store
host registers */

/*将相关寄存器压栈*/

"push %%" _ASM_DX ";
push %%" _ASM_BP ";"/*BP压栈*/

/*为guest的rcx寄存器保留个位置,所以这里压两次栈*/

"push %%" _ASM_CX "
\n\t" /* placeholder for guest
rcx */

"push %%" _ASM_CX "
\n\t"

/*

* %c表示用来表示使用立即数替换,但不使用立即数的语法,at&t汇编中表示立即数的语法前面有一个$,而用了%c后,就去掉了这个$。

* 主要是用在间接寻址的情况,这种情况下如果直接使用$立即数的方式的话,会报语法错误。

* [host_rsp]是后面输入部分定义的tag,使用%tag方式可以直接引用,%0是后面输入输出部分中的第一个操作数,即vmx,这里是间接寻址

* %c[host_rsp](%0)整体来看就是vmx(以寄存器ecx传入)中的host_rsp成员。

* 所以,如下语句的整体含义就是比较当前SP寄存器和vmx->host_rsp的值。

*/

/*如果当前RSP和vmx->rsp相等,那就不用mov了,否则将当前RSP保存到vmx中*/

"cmp %%" _ASM_SP ",
%c[host_rsp](%0) \n\t"

"je 1f \n\t"

"mov %%" _ASM_SP ",
%c[host_rsp](%0) \n\t"

/*

* 执行ASM_VMX_VMWRITE_RSP_RDX指令(Writes the contents of a primary source operand (register or memory) to a specified field in a VMCS,即将RSP的值写入vmcs中,field由RDX寄存器指定,

* 而此时的RDX寄存器的内容由后面的约束条件:"d"((unsigned long)HOST_RSP指定为HOST_RSP,所以这句命令的作用为:将rsp的值写vmcs,field是HOST_RSP。),

* 当出现异常时直接重启,由__ex()实现

*/

__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"

"1: \n\t"

/* Reload
cr2 if changed */

/*比较当前CR2寄存器和vmx中保存的CR2寄存器内容,如果不相等,就从vmx中重新CR2内容到当前CR2寄存器中*/

"mov %c[cr2](%0), %%" _ASM_AX "
\n\t"

"mov %%cr2, %%" _ASM_DX "
\n\t"

"cmp %%" _ASM_AX ",
%%" _ASM_DX " \n\t"

"je 2f \n\t"

"mov %%" _ASM_AX",
%%cr2 \n\t"

"2: \n\t"

/* Check if vmlaunch
of vmresume is needed */

/*判断vcpu_vmx->__launched,确认是否需要执行VMLAUNCH*/

"cmpl $0, %c[launched](%0) \n\t"

/* Load
guest registers. Don't
clobber flags. */

/*加载guest寄存器,其实就是从vmx中加载*/

"mov %c[rax](%0), %%" _ASM_AX "
\n\t"

"mov %c[rbx](%0), %%" _ASM_BX "
\n\t"

"mov %c[rdx](%0), %%" _ASM_DX "
\n\t"

"mov %c[rsi](%0), %%" _ASM_SI "
\n\t"

"mov %c[rdi](%0), %%" _ASM_DI "
\n\t"

"mov %c[rbp](%0), %%" _ASM_BP "
\n\t"

#ifdef CONFIG_X86_64

"mov %c[r8](%0), %%r8 \n\t"

"mov %c[r9](%0), %%r9 \n\t"

"mov %c[r10](%0), %%r10 \n\t"

"mov %c[r11](%0), %%r11 \n\t"

"mov %c[r12](%0), %%r12 \n\t"

"mov %c[r13](%0), %%r13 \n\t"

"mov %c[r14](%0), %%r14 \n\t"

"mov %c[r15](%0), %%r15 \n\t"

#endif

"mov %c[rcx](%0), %%" _ASM_CX "
\n\t" /* kills %0 (ecx) */

/* Enter
guest mode */

"jne 1f \n\t"

/* 执行VMLAUNCH指令,进入Guest模式*/

__ex(ASM_VMX_VMLAUNCH) "\n\t"

"jmp 2f \n\t"

/* 执行VMRESUME指令,从Guest模式恢复到root模式*/

"1: " __ex(ASM_VMX_VMRESUME) "\n\t"

"2: "

/* Save
guest registers, load host registers, keep
flags */

"mov %0, %c[wordsize](%%" _ASM_SP ")
\n\t"

"pop %0 \n\t"

"mov %%" _ASM_AX ",
%c[rax](%0) \n\t"

"mov %%" _ASM_BX ",
%c[rbx](%0) \n\t"

__ASM_SIZE(pop) "
%c[rcx](%0) \n\t"

"mov %%" _ASM_DX ",
%c[rdx](%0) \n\t"

"mov %%" _ASM_SI ",
%c[rsi](%0) \n\t"

"mov %%" _ASM_DI ",
%c[rdi](%0) \n\t"

"mov %%" _ASM_BP ",
%c[rbp](%0) \n\t"

#ifdef CONFIG_X86_64

"mov %%r8, %c[r8](%0) \n\t"

"mov %%r9, %c[r9](%0) \n\t"

"mov %%r10, %c[r10](%0) \n\t"

"mov %%r11, %c[r11](%0) \n\t"

"mov %%r12, %c[r12](%0) \n\t"

"mov %%r13, %c[r13](%0) \n\t"

"mov %%r14, %c[r14](%0) \n\t"

"mov %%r15, %c[r15](%0) \n\t"

#endif

"mov %%cr2, %%" _ASM_AX "
\n\t"

"mov %%" _ASM_AX ",
%c[cr2](%0) \n\t"

"pop %%" _ASM_BP ";
pop %%" _ASM_DX " \n\t"

"setbe %c[fail](%0) \n\t"

".pushsection .rodata \n\t"

".global vmx_return \n\t"

"vmx_return: " _ASM_PTR "
2b \n\t"

".popsection"

: : "c"(vmx), "d"((unsigned
long)HOST_RSP),

[launched]"i"(offsetof(struct
vcpu_vmx, __launched)),

[fail]"i"(offsetof(struct
vcpu_vmx, fail)),

/*[host_rsp]是tag,可以在前面以%[host_rsp]方式引用*/

[host_rsp]"i"(offsetof(struct
vcpu_vmx, host_rsp)),

[rax]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),

[rbx]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),

[rcx]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),

[rdx]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),

[rsi]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),

[rdi]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),

[rbp]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),

#ifdef CONFIG_X86_64

[r8]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),

[r9]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),

[r10]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),

[r11]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),

[r12]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),

[r13]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),

[r14]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),

[r15]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),

#endif

[cr2]"i"(offsetof(struct
vcpu_vmx, vcpu.arch.cr2)),

[wordsize]"i"(sizeof(ulong))

: "cc", "memory"/*clobber
list,cc表示寄存器,memory表示内存*/

#ifdef CONFIG_X86_64

, "rax", "rbx", "rdi", "rsi"

, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"

#else

, "eax", "ebx", "edi", "esi"

#endif

);

// 运行到这里,说明已经发生了VM-exit,返回到了root模式

/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore
it if needed */

if (debugctlmsr)

update_debugctlmsr(debugctlmsr);

#ifndef CONFIG_X86_64

/*

* The
sysexit path does not restore ds/es, so
we must set them to

* a
reasonable value ourselves.

*

* We
can't defer this to vmx_load_host_state() since
that function

* may
be executed in interrupt context, which
saves and restore segments

* around
it, nullifying its effect.

*/

/*重新加载ds/es段寄存器,因为VM-exit不会自动加载他们*/

loadsegment(ds, __USER_DS);

loadsegment(es, __USER_DS);

#endif

vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)

| (1 << VCPU_EXREG_RFLAGS)

| (1 << VCPU_EXREG_CPL)

| (1 << VCPU_EXREG_PDPTR)

| (1 << VCPU_EXREG_SEGMENTS)

| (1 << VCPU_EXREG_CR3));

vcpu->arch.regs_dirty = 0;

// 从硬件VMCS中读取中断向量表信息

vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);

vmx->loaded_vmcs->launched = 1;

// 从硬件VMCS中读取VM-exit原因信息,这些信息是VM-exit过程中由硬件自动写入的

vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);

trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);

/*处理MCE异常和NMI中断*/

vmx_complete_atomic_exit(vmx);

vmx_recover_nmi_blocking(vmx);

vmx_complete_interrupts(vmx);

}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: