您的位置:首页 > 其它

图有关算法(prim、kruskal、dijkstra)

2015-11-16 17:03 393 查看
代码下载https://github.com/wangkuiwu/datastructs_and_algorithm/blob/master/source/graph/dijkstra/udg/c/matrix_udg.c

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

 

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。

4.算法实例

先给出一个无向图


用Dijkstra算法找出以A为起点的单源最短路径步骤如下



----------------------------------------------------------我是分割线--------------------------------------------

Floyd算法

1.定义概览

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

 

2.算法描述

1)算法思想原理:

     Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

      从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   
b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

----------------------------------------------------------我是分割线--------------------------------------------

1.prim算法

  基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合。算法从U={u0}(u0∈V)、TE={}开始。重复执行下列操作:

   在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最小的边(u0,v0)并入集合TE中,同时v0并入U,直到V=U为止。

   此时,TE中必有n-1条边,T=(V,TE)为G的最小生成树。

   Prim算法的核心:始终保持TE中的边集构成一棵生成树。

注意:prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边得数目无关,而kruskal算法的时间复杂度为O(eloge)跟边的数目有关,适合稀疏图。
----------------------------------------------------------我是分割线--------------------------------------------

    二、Kruskal算法:

    Kruskal算法与Prim算法的不同之处在于,Kruskal在找最小生成树结点之前,需要对所有权重边做从小到大排序。将排序好的权重边依次加入到最小生成树中,如果加入时产生回路就跳过这条边,加入下一条边。当所有结点都加入到最小生成树中之后,就找出了最小生成树。
----------------------------------------------------------我是分割线--------------------------------------------

/**
* C: Dijkstra算法获取最短路径(邻接矩阵)
*
* @author skywang
* @date 2014/04/24
*/

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>

#define MAX         100                 // 矩阵最大容量
#define INF         (~(0x1<<31))        // 最大值(即0X7FFFFFFF)
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a)   (sizeof(a)/sizeof(a[0]))

// 邻接矩阵
typedef struct _graph
{
char vexs[MAX];       // 顶点集合
int vexnum;           // 顶点数
int edgnum;           // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

// 边的结构体
typedef struct _EdgeData
{
char start; // 边的起点
char end;   // 边的终点
int weight; // 边的权重
}EData;

/*
* 返回ch在matrix矩阵中的位置
*/
static int get_position(Graph G, char ch)
{
int i;
for(i=0; i<G.vexnum; i++)
if(G.vexs[i]==ch)
return i;
return -1;
}

/*
* 读取一个输入字符
*/
static char read_char()
{
char ch;

do {
ch = getchar();
} while(!isLetter(ch));

return ch;
}

/*
* 创建图(自己输入)
*/
Graph* create_graph()
{
char c1, c2;
int v, e;
int i, j, weight, p1, p2;
Graph* pG;

// 输入"顶点数"和"边数"
printf("input vertex number: ");
scanf("%d", &v);
printf("input edge number: ");
scanf("%d", &e);
if ( v < 1 || e < 1 || (e > (v * (v-1))))
{
printf("input error: invalid parameters!\n");
return NULL;
}

if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph));

// 初始化"顶点数"和"边数"
pG->vexnum = v;
pG->edgnum = e;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
{
printf("vertex(%d): ", i);
pG->vexs[i] = read_char();
}

// 1. 初始化"边"的权值
for (i = 0; i < pG->vexnum; i++)
{
for (j = 0; j < pG->vexnum; j++)
{
if (i==j)
pG->matrix[i][j] = 0;
else
pG->matrix[i][j] = INF;
}
}
// 2. 初始化"边"的权值: 根据用户的输入进行初始化
for (i = 0; i < pG->edgnum; i++)
{
// 读取边的起始顶点,结束顶点,权值
printf("edge(%d):", i);
c1 = read_char();
c2 = read_char();
scanf("%d", &weight);

p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2);
if (p1==-1 || p2==-1)
{
printf("input error: invalid edge!\n");
free(pG);
return NULL;
}

pG->matrix[p1][p2] = weight;
pG->matrix[p2][p1] = weight;
}

return pG;
}

/*
* 创建图(用已提供的矩阵)
*/
Graph* create_example_graph()
{
char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int matrix[][9] = {
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/ {   0,  12, INF, INF, INF,  16,  14},
/*B*/ {  12,   0,  10, INF, INF,   7, INF},
/*C*/ { INF,  10,   0,   3,   5,   6, INF},
/*D*/ { INF, INF,   3,   0,   4, INF, INF},
/*E*/ { INF, INF,   5,   4,   0,   2,   8},
/*F*/ {  16,   7,   6, INF,   2,   0,   9},
/*G*/ {  14, INF, INF, INF,   8,   9,   0}};
int vlen = LENGTH(vexs);
int i, j;
Graph* pG;

// 输入"顶点数"和"边数"
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph));

// 初始化"顶点数"
pG->vexnum = vlen;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
pG->vexs[i] = vexs[i];

// 初始化"边"
for (i = 0; i < pG->vexnum; i++)
for (j = 0; j < pG->vexnum; j++)
pG->matrix[i][j] = matrix[i][j];

// 统计边的数目
for (i = 0; i < pG->vexnum; i++)
for (j = 0; j < pG->vexnum; j++)
if (i!=j && pG->matrix[i][j]!=INF)
pG->edgnum++;
pG->edgnum /= 2;

return pG;
}

/*
* 返回顶点v的第一个邻接顶点的索引,失败则返回-1
*/
static int first_vertex(Graph G, int v)
{
int i;

if (v<0 || v>(G.vexnum-1))
return -1;

for (i = 0; i < G.vexnum; i++)
if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF)
return i;

return -1;
}

/*
* 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
*/
static int next_vertix(Graph G, int v, int w)
{
int i;

if (v<0 || v>(G.vexnum-1) || w<0 || w>(G.vexnum-1))
return -1;

for (i = w + 1; i < G.vexnum; i++)
if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF)
return i;

return -1;
}

/*
* 深度优先搜索遍历图的递归实现
*/
static void DFS(Graph G, int i, int *visited)
{
int w;

visited[i] = 1;
printf("%c ", G.vexs[i]);
// 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走
for (w = first_vertex(G, i); w >= 0; w = next_vertix(G, i, w))
{
if (!visited[w])
DFS(G, w, visited);
}

}

/*
* 深度优先搜索遍历图
*/
void DFSTraverse(Graph G)
{
int i;
int visited[MAX];       // 顶点访问标记

// 初始化所有顶点都没有被访问
for (i = 0; i < G.vexnum; i++)
visited[i] = 0;

printf("DFS: ");
for (i = 0; i < G.vexnum; i++)
{
//printf("\n== LOOP(%d)\n", i);
if (!visited[i])
DFS(G, i, visited);
}
printf("\n");
}

/*
* 广度优先搜索(类似于树的层次遍历)
*/
void BFS(Graph G)
{
int head = 0;
int rear = 0;
int queue[MAX];     // 辅组队列
int visited[MAX];   // 顶点访问标记
int i, j, k;

for (i = 0; i < G.vexnum; i++)
visited[i] = 0;

printf("BFS: ");
for (i = 0; i < G.vexnum; i++)
{
if (!visited[i])
{
visited[i] = 1;
printf("%c ", G.vexs[i]);
queue[rear++] = i;  // 入队列
}
while (head != rear)
{
j = queue[head++];  // 出队列
for (k = first_vertex(G, j); k >= 0; k = next_vertix(G, j, k)) //k是为访问的邻接顶点
{
if (!visited[k])
{
visited[k] = 1;
printf("%c ", G.vexs[k]);
queue[rear++] = k;
}
}
}
}
printf("\n");
}

/*
* 打印矩阵队列图
*/
void print_graph(Graph G)
{
int i,j;

printf("Martix Graph:\n");
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
printf("%10d ", G.matrix[i][j]);
printf("\n");
}
}

/*
* prim最小生成树
*
* 参数说明:
*       G -- 邻接矩阵图
*   start -- 从图中的第start个元素开始,生成最小树
*/
void prim(Graph G, int start)
{
int min,i,j,k,m,n,sum;
int index=0;         // prim最小树的索引,即prims数组的索引
char prims[MAX];     // prim最小树的结果数组
int weights[MAX];    // 顶点间边的权值

// prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
prims[index++] = G.vexs[start];

// 初始化"顶点的权值数组",
// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < G.vexnum; i++ )
weights[i] = G.matrix[start][i];
// 将第start个顶点的权值初始化为0。
// 可以理解为"第start个顶点到它自身的距离为0"。
weights[start] = 0;

for (i = 0; i < G.vexnum; i++)
{
// 由于从start开始的,因此不需要再对第start个顶点进行处理。
if(start == i)
continue;

j = 0;
k = 0;
min = INF;
// 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
while (j < G.vexnum)
{
// 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
if (weights[j] != 0 && weights[j] < min)
{
min = weights[j];
k = j;
}
j++;
}

// 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
// 将第k个顶点加入到最小生成树的结果数组中
prims[index++] = G.vexs[k];
// 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
weights[k] = 0;
// 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
for (j = 0 ; j < G.vexnum; j++)
{
// 当第j个节点没有被处理,并且需要更新时才被更新。
if (weights[j] != 0 && G.matrix[k][j] < weights[j])
weights[j] = G.matrix[k][j];
}
}

// 计算最小生成树的权值
sum = 0;
for (i = 1; i < index; i++)
{
min = INF;
// 获取prims[i]在G中的位置
n = get_position(G, prims[i]);
// 在vexs[0...i]中,找出到j的权值最小的顶点。
for (j = 0; j < i; j++)
{
m = get_position(G, prims[j]);
if (G.matrix[m]
<min)
min = G.matrix[m]
;
}
sum += min;
}
// 打印最小生成树
printf("PRIM(%c)=%d: ", G.vexs[start], sum);
for (i = 0; i < index; i++)
printf("%c ", prims[i]);
printf("\n");
}

/*
* 获取图中的边
*/
EData* get_edges(Graph G)
{
int i,j;
int index=0;
EData *edges;

edges = (EData*)malloc(G.edgnum*sizeof(EData));
for (i=0;i < G.vexnum;i++)
{
for (j=i+1;j < G.vexnum;j++)
{
if (G.matrix[i][j]!=INF)
{
edges[index].start  = G.vexs[i];
edges[index].end    = G.vexs[j];
edges[index].weight = G.matrix[i][j];
index++;
}
}
}

return edges;
}

/*
* 对边按照权值大小进行排序(由小到大)
*/
void sorted_edges(EData* edges, int elen)
{
int i,j;

for (i=0; i<elen; i++)
{
for (j=i+1; j<elen; j++)
{
if (edges[i].weight > edges[j].weight)
{
// 交换"第i条边"和"第j条边"
EData tmp = edges[i];
edges[i] = edges[j];
edges[j] = tmp;
}
}
}
}

/*
* 获取i的终点
*/
int get_end(int vends[], int i)
{
while (vends[i] != 0)
i = vends[i];
return i;
}

/*
* 克鲁斯卡尔(Kruskal)最小生成树
*/
void kruskal(Graph G)
{
int i,m,n,p1,p2;
int length;
int index = 0;          // rets数组的索引
int vends[MAX]={0};     // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
EData rets[MAX];        // 结果数组,保存kruskal最小生成树的边
EData *edges;           // 图对应的所有边

// 获取"图中所有的边"
edges = get_edges(G);
// 将边按照"权"的大小进行排序(从小到大)
sorted_edges(edges, G.edgnum);

for (i=0; i<G.edgnum; i++)
{
p1 = get_position(G, edges[i].start);   // 获取第i条边的"起点"的序号
p2 = get_position(G, edges[i].end);     // 获取第i条边的"终点"的序号

m = get_end(vends, p1);                 // 获取p1在"已有的最小生成树"中的终点
n = get_end(vends, p2);                 // 获取p2在"已有的最小生成树"中的终点
// 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
if (m != n)
{
vends[m] = n;                       // 设置m在"已有的最小生成树"中的终点为n
rets[index++] = edges[i];           // 保存结果
}
}
free(edges);

// 统计并打印"kruskal最小生成树"的信息
length = 0;
for (i = 0; i < index; i++)
length += rets[i].weight;
printf("Kruskal=%d: ", length);
for (i = 0; i < index; i++)
printf("(%c,%c) ", rets[i].start, rets[i].end);
printf("\n");
}

/*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
*        G -- 图
*       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
*     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
*     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX];      // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。

// 初始化
for (i = 0; i < G.vexnum; i++)
{
flag[i] = 0;              // 顶点i的最短路径还没获取到。
prev[i] = 0;              // 顶点i的前驱顶点为0。
dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
}

// 对"顶点vs"自身进行初始化
flag[vs] = 1;
dist[vs] = 0;

// 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
for (i = 1; i < G.vexnum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = 0; j < G.vexnum; j++)
{
if (flag[j]==0 && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = 1;

// 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = 0; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
if (flag[j] == 0 && (tmp  < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
}

// 打印dijkstra最短路径的结果
printf("dijkstra(%c): \n", G.vexs[vs]);
for (i = 0; i < G.vexnum; i++)
printf("  shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}

void main()
{
int prev[MAX] = {0};
int dist[MAX] = {0};
Graph* pG;

// 自定义"图"(输入矩阵队列)
//pG = create_graph();
// 采用已有的"图"
pG = create_example_graph();

//print_graph(*pG);       // 打印图
//DFSTraverse(*pG);       // 深度优先遍历
//BFS(*pG);               // 广度优先遍历
prim(*pG, 0);           // prim算法生成最小生成树
//kruskal(*pG);           // kruskal算法生成最小生成树

// dijkstra算法获取"第4个顶点"到其它各个顶点的最短距离
//dijkstra(*pG, 3, prev, dist);
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: