您的位置:首页 > 运维架构 > Linux

基于Linux 平台的libpcap源代码分析(四)

2015-10-16 00:47 453 查看
(2012-03-16 14:19:50)
转载▼
标签:

it

分类:
c
数据包过滤机制

大量的网络监控程序目的不同,期望的数据包类型也不同,但绝大多数情况都都只需要所有数据包的一(小)部分。

例如:对邮件系统进行监控可能只需要端口号为 25(smtp)和 110(pop3) 的 TCP 数据包,对 DNS 系统进行监控就只需要端口号为 53 的 UDP 数据包。包过滤机制的引入就是为了解决上述问题,用户程序只需简单的设置一系列过滤条件,最终便能获得满足

条件的数据包。包过滤操作可以在用户空间执行,也可以在内核空间执行,但必须注意到数据包从内核空间拷贝到用户

空间的开销很大,所以如果能在内核空间进行过滤,会极大的提高捕获的效率。内核过滤的优势在低速网络下表现不明显,

但在高速网络下是非常突出的。在理论研究和实际应用中,包捕获和包过滤从语意上并没有严格的区分,关键在于认识到

捕获数据包必然有过滤操作。基本上可以认为,包过滤机制在包捕获机制中占中心地位。

包过滤机制实际上是针对数据包的布尔值操作函数,如果函数最终返回 true,则通过过滤,反之则被丢弃。形式上包过滤由一个或多个谓词判断的并操作(AND)和或操作(OR)构成,每一个谓词判断基本上对应了数据包的协议类型或某个特定值,例如:只需要 TCP 类型且端口为 110 的数据包或 ARP 类型的数据包。包过滤机制在具体的实现上与数据包的协议类型并无多少关系,它只是把数据包简单的看成一个字节数组,而谓词判断会根据具体的协议映射到数组特定位置的值。如判断ARP类型数据包,只需要判断数组中第 13、14 个字节(以太头中的数据包类型)是否为 0X0806。从理论研究的意思上看,包过滤机制是一个数学问题,或者说是一个算法问题,其中心任务是如何使用最少的判断操作、最少的时间完成过滤处理,提高过滤效率。
[/code]

回页首
BPF
Libpcap 重点使用 BPF(BSD Packet Filter)包过滤机制,BPF 于 1992 年被设计出来,其设计目的主要是解决当时已存在的过滤机制效率低下的问题。BPF的工作步骤如下:当一个数据包到
达网络接口时,数据链路层的驱动会把它向系统的协议栈传送。但如果 BPF 监听接口,驱动首先调用 BPF。BPF 首先进行过滤操作,然后把数据包存放在过滤器相关的缓冲区中,最后设备驱动再次获得控制。注意到BPF是先对数据包
过滤再缓冲,避免了类似 sun 的 NIT 过滤机制先缓冲每个数据包直到用户读数据时再过滤所造成的效率问题。参考资料D是关于 BPF 设计思想最重要的文献。
BPF 的设计思想和当时的计算机硬件的发展有很大联系,相对老式的过滤方式CSPF(CMU/Stanford Packet Filter)它有两大特点。1:基于寄存器的过滤机制,而不是早期内存堆栈过滤机制,2:直接使用独立的、非共享的内存缓冲区。同时,BPF 在过滤算法是也有很大进步,它使用无环控制流图(CFG control flow graph),而不是老式的布尔表达式树(boolean expression tree)。布尔表达式树理解上比较直观,它的每一个叶子节点即是一个谓词判断,而非叶子节点则为 AND 操作或 OR操作。CSPF 有三个主要的缺点。1:过滤操作使用的栈在内存中被模拟,维护栈指针需要使用若干的加/减等操作,而内存操作是现代计算机架构的
主要瓶颈。2:布尔表达式树造成了不需要的重复计算。3:不能分析数据包的变长头部。BPF 使用的CFG 算法实际上是一种特殊的状态机,每一节点代表了一个谓词判断,而左右边分别对应了判断失败和成功后的跳转,跳转后又是谓词判断,
这样反复操作,直到到达成功或失败的终点。CFG 算法的优点在于把对数据包的分析信息直接建立在图中,从而不需要重复计算。直观的看,CFG 是一种"快速的、一直向前"的算法。


回页首
过滤代码的编译
BPF 对 CFG 算法的代码实现非常复杂,它使用伪机器方式。BPF 伪机器是一个轻量级的,高效的状态机,对 BPF 过滤代码进行解释处理。BPF 过滤代码形式为"opcode jt jf k",分别代表了操作码和寻址方式、判断正确的跳转、判断失败的跳转、操作使用的通用数据域。BPF 过滤代码从逻辑上看很类似于汇编语言,但它实际上是机器语言,注意到上述 4 个域的数据类型都是 int 和 char 型。显然,由用户来写
过滤代码太过复杂,因此 libpcap 允许用户书写高层的、容易理解的过滤字符串,然后将其编译为BPF代码。
Libpcap 使用了 4 个源程序 gencode.c、optimize.c、grammar.c、scanner.c完成编译操作,其中前两个实现了对过滤字符串的编译和优化,后两个主要是为
编译提供从协议相关过滤条件到协议无关(的字符数组)位置信息的映射,并且它们由词汇分析器生成器 flex 和 bison 生成。参考资料 C 有对此两个工具的讲解。

flex -Ppcap_ -t scanner.l > $.scanner.c; mv $.scanner.c scanner.c bison -y -p pcap_ -d grammar.y mv y.tab.c grammar.c mv y.tab.h tokdefs.h
[/code]
编译过滤字符串调用了函数 pcap_compile()[getcode.c],形式为:

int pcap_compile(pcap_t *p, struct bpf_program *program, char *buf, int optimize, bpf_u_int32 mask)
[/code]
其中 buf 指向用户过滤字符串,编译后的 BPF 代码存在在结构 bpf_program中,标志 optimize 指示是否对 BPF 代码进行优化。

struct bpf_program { u_int bf_len; struct bpf_insn *bf_insns; }; struct bpf_insn { u_short code; u_char jt; u_char jf; bpf_int32 k; };
[/code]


回页首
过滤代码的安装
前面我们曾经提到,在内核空间过滤数据包对整个捕获机制的效率是至关重要的。早期使用 SOCK_PACKET 方式的 Linux 不支持内核过滤,因此过滤操作只能在用户空间执行(请参阅函数 pcap_read_packet() 代码),在《UNIX 网络编程(第一卷)》
(参考资料 B)的第 26 章中对此有明确的描述。不过现在看起来情况已经发生改变,linux 在 PF_PACKET 类型的 socket 上支持内核过滤。Linux 内核允许我们把一个名为 LPF(Linux Packet Filter) 的过滤器直接放到 PF_PACKET 类型 socket 的处理过程中,过滤器在网卡接收中断执行后立即执行。LSF 基于 BPF 机制,但两者在实现上有略微的不同。实际代码如下:

static int pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter) { #ifdef SO_ATTACH_FILTER struct sock_fprog fcode; int can_filter_in_kernel; int err = 0; #endif if (!handle) return -1; if (!filter) { strncpy(handle->errbuf, "setfilter: No filter specified", sizeof(handle->errbuf)); return -1; } if (install_bpf_program(handle, filter) < 0) return -1; handle->md.use_bpf = 0; #ifdef SO_ATTACH_FILTER #ifdef USHRT_MAX if (handle->fcode.bf_len > USHRT_MAX) { fprintf(stderr, "Warning: Filter too complex for kernel\n"); fcode.filter = NULL; can_filter_in_kernel = 0; } else #endif { switch (fix_program(handle, &fcode)) { case -1: default: return -1; case 0: can_filter_in_kernel = 0; break; case 1: can_filter_in_kernel = 1; break; } } if (can_filter_in_kernel) { if ((err = set_kernel_filter(handle, &fcode)) == 0) { handle->md.use_bpf = 1; } else if (err == -1) { if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) { fprintf(stderr, "Warning: Kernel filter failed: %s\n",pcap_strerror(errno)); } } } if (!handle->md.use_bpf) reset_kernel_filter(handle);[pcap-linux.c] #endif } int install_bpf_program(pcap_t *p, struct bpf_program *fp) { size_t prog_size; pcap_freecode(&p->fcode); prog_size = sizeof(*fp->bf_insns) * fp->bf_len; p->fcode.bf_len = fp->bf_len; p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size); if (p->fcode.bf_insns == NULL) { snprintf(p->errbuf, sizeof(p->errbuf), "malloc: %s", pcap_strerror(errno)); return (-1); } memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size); return (0); } static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode) { int total_filter_on = 0; int save_mode; int ret; int save_errno; setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER, &total_fcode, sizeof(total_fcode); save_mode = fcntl(handle->fd, F_GETFL, 0); fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK); while (recv(handle->fd, &drain, sizeof drain, MSG_TRUNC) >= 0); fcntl(handle->fd, F_SETFL, save_mode); setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER, fcode, sizeof(*fcode)); } static int reset_kernel_filter(pcap_t *handle) { int dummy; return setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER, &dummy, sizeof(dummy)); }
[/code]
linux 在安装和卸载过滤器时都使用了函数 setsockopt(),其中标志SOL_SOCKET 代表了对 socket 进行设置,而 SO_ATTACH_FILTER 和 SO_DETACH_FILTER 则分别对应了安装和卸载。下面是 linux 2.4.29 版本中的相关代码:

[net/core/sock.c] #ifdef CONFIG_FILTER case SO_ATTACH_FILTER: …… if (copy_from_user(&fprog, optval, sizeof(fprog))) break; ret = sk_attach_filter(&fprog, sk); …… case SO_DETACH_FILTER: spin_lock_bh(&sk->lock.slock); filter = sk->filter; if (filter) { sk->filter = NULL; spin_unlock_bh(&sk->lock.slock); sk_filter_release(sk, filter); break; } spin_unlock_bh(&sk->lock.slock); ret = -ENONET; break; #endif
[/code]
上面出现的 sk_attach_filter() 定义在 net/core/filter.c,它把结构sock_fprog 转换为结构 sk_filter, 最后把此结构设置为 socket 的过滤器:sk->filter = fp。


回页首
其他代码
libpcap 还提供了其它若干函数,但基本上是提供辅助或扩展功能,重要性相对弱一点。我个人认为,函数 pcap_dump_open() 和 pcap_open_offline() 可能比较有用,使用它们能把在线的数据包写入文件并事后进行分析处理。


回页首
总结
1994 年 libpcap 的第一个版本被发布,到现在已有 11 年的历史,如今libpcap 被广泛的应用在各种网络监控软件中。Libpcap 最主要的优点在于平台无关性,用户程序几乎不需做任何改动就可移植到其它 unix 平台上;其次,libpcap也能适应各种过滤机制,特别对BPF的支持最好。分析它的源代码,可以学习开发者优秀的设计思想和实现技巧,
也能了解到(linux)操作系统的网络内核实现,对个人能力的提高有很大帮助。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: