您的位置:首页 > 其它

hdu 5407 CRB and Candies(素数筛选法,除法取模(乘法逆元))

2015-08-25 22:40 330 查看
题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5407

解题思路:

官方题解:

The problem is just to calculate g(N)\
=\ LCM(C(N,0), C(N,1), ..., C(N, N))g(N) = LCM(C(N,0),C(N,1),...,C(N,N)).

Introducing function f(n)\
=\ LCM(1, 2, ..., n)f(n) = LCM(1,2,...,n),
the fact g(n)\
=\ f(n+1) / (n+1)g(n) = f(n+1)/(n+1) holds.

We calculate f(n)f(n) in
the following way.

f(1)=1f(1)=1.

If n\
=p^{k}n =p​k​​ then f(n)\
=\ f(n-1) \times \ pf(n) = f(n−1)× p,
else f(n)\
=\ f(n-1)f(n) = f(n−1).

Time complexity:O(N\cdot logN)O(N⋅logN)

如果不会做,可以取个巧,已知前n项,可以在这个网站找找规律再做。。。http://oeis.org/?language=english



LCM((n0),(n1)…(nn))



g(n)=LCM((n0),(n1)…(nn))
以及

f(n)=LCM(1,2,…n)
则有

g(n)=f(n+1)n+1

显然f(1)=1,考虑f(n)的质因数分解形式,知道

f(n)=⎧⎩⎨f(n−1)
* p,f(n−1),if n=pkif n!=pk
其中p表示一个质数,即判断n是否能表达成某个质数的整数k次方.

最后的除以n+1部分需要用逆元处理一下

证明过程如下:

http://www.zhihu.com/question/34859879/answer/60168919

http://arxiv.org/pdf/0906.2295v2.pdf

首先用素数筛选法求出1~1000000之间的素数,然后再计算f
,但是计算f(n)的时候不能直接除以(n+1),应乘以其逆元.
下面有两种求逆元的模板:

1.利用扩展欧几里德算法求逆元

ll extend_gcd(ll a,ll b,ll &x,ll &y){
    if(a == 0 && b == 0)
        return -1;//无最大公约数
    if(b == 0){
        x = 1;
        y = 0;
        return a;
    }
    ll d = extend_gcd(b,a%b,y,x);
    y -= a/b*x;
    return d;
}

//*********求逆元素*******************
//ax = 1(mod n)
ll mod_reverse(ll a,ll n)
{
    ll x,y;
    ll d = extend_gcd(a,n,x,y);
    if(d == 1)
        return (x%n+n)%n;
    else
        return -1;
}


2.利用快速幂求逆元

ll pow_mod(ll x, int n) {
    ll ret = 1;
    while (n) {
        if (n&1)
            ret = ret * x % MOD;
        x = x * x % MOD;
        n >>= 1;
    }
    return ret;
}

ll mod_reverse(ll x) {
    return pow_mod(x, MOD-2);
}


AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

typedef long long ll;
const int MOD = 1000000007;
const int N = 1000005;
ll f
;
int nprime;
int vis
;
int prime[80000];

void getprime(){
nprime = 0;
memset(vis,0,sizeof(vis));
memset(prime,0,sizeof(prime));
for(int i = 2; i <= N-5; i++){
int t = (N-5)/i;
for(int j = 2; j <= t; j++){
vis[i*j] = 1;
}
}
for(int i = 2; i <= N-5; i++){
if(!vis[i])
prime[nprime++] = i;
}
memset(vis,0,sizeof(vis));
for(int i = 0; i < nprime; i++){
ll a = prime[i];
ll b = a;
for(; a < N; a*=b)
vis[a] = b;
}
}

void init(){
getprime();
f[1] = 1;
for(int i = 2; i <= N-4; i++){
if(vis[i])
f[i] = f[i-1]*vis[i]%MOD;
else
f[i] = f[i-1];
f[i] %= MOD;
}
}
/*
ll extend_gcd(ll a,ll b,ll &x,ll &y){ if(a == 0 && b == 0) return -1;//无最大公约数 if(b == 0){ x = 1; y = 0; return a; } ll d = extend_gcd(b,a%b,y,x); y -= a/b*x; return d; } //*********求逆元素******************* //ax = 1(mod n) ll mod_reverse(ll a,ll n) { ll x,y; ll d = extend_gcd(a,n,x,y); if(d == 1) return (x%n+n)%n; else return -1; }
*/

ll pow_mod(ll x, int n) { ll ret = 1; while (n) { if (n&1) ret = ret * x % MOD; x = x * x % MOD; n >>= 1; } return ret; } ll mod_reverse(ll x) { return pow_mod(x, MOD-2); }
int main(){
init();
int T;
scanf("%d",&T);
while(T--){
int n;
scanf("%d",&n);
//ll ni = mod_reverse(n+1,MOD);
ll ni = mod_reverse(n+1);
printf("%lld\n",f[n+1]*ni%MOD);
}
return 0;
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: