您的位置:首页 > 编程语言 > Java开发

java.util.concurrent包API学习笔记

2015-08-19 18:11 609 查看


newFixedThreadPool

创建一个固定大小的线程池。

shutdown():用于关闭启动线程,如果不调用该语句,jvm不会关闭。

awaitTermination():用于等待子线程结束,再继续执行下面的代码。该例中我设置一直等着子线程结束。

 

 

Java代码


 




public class Test {  
  
    public static void main(String[] args) throws IOException, InterruptedException {  
        ExecutorService service = Executors.newFixedThreadPool(2);  
        for (int i = 0; i < 4; i++) {  
            Runnable run = new Runnable() {  
                @Override  
                public void run() {  
                    System.out.println("thread start");  
                }  
            };  
            service.execute(run);  
        }  
        service.shutdown();  
        service.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);  
        System.out.println("all thread complete");  
    }  
}  

public class Test {

public static void main(String[] args) throws IOException, InterruptedException {
ExecutorService service = Executors.newFixedThreadPool(2);
for (int i = 0; i < 4; i++) {
Runnable run = new Runnable() {
@Override
public void run() {
System.out.println("thread start");
}
};
service.execute(run);
}
service.shutdown();
service.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
System.out.println("all thread complete");
}
}

 

 

 

 输出:
thread start

thread start

thread start

thread start

all thread complete

newScheduledThreadPool

这个先不说,我喜欢用spring quartz.

CyclicBarrier

假设有只有的一个场景:每个线程代表一个跑步运动员,当运动员都准备好后,才一起出发,只要有一个人没有准备好,大家都等待.

 

 

Java代码


 




import java.io.IOException;  
import java.util.Random;  
import java.util.concurrent.BrokenBarrierException;  
import java.util.concurrent.CyclicBarrier;  
import java.util.concurrent.ExecutorService;  
import java.util.concurrent.Executors;  
  
class Runner implements Runnable {  
  
    private CyclicBarrier barrier;  
  
    private String name;  
  
    public Runner(CyclicBarrier barrier, String name) {  
        super();  
        this.barrier = barrier;  
        this.name = name;  
    }  
  
    @Override  
    public void run() {  
        try {  
            Thread.sleep(1000 * (new Random()).nextInt(8));  
            System.out.println(name + " 准备OK.");  
            barrier.await();  
        } catch (InterruptedException e) {  
            e.printStackTrace();  
        } catch (BrokenBarrierException e) {  
            e.printStackTrace();  
        }  
        System.out.println(name + " Go!!");  
    }  
}  
  
public class Race {  
  
    public static void main(String[] args) throws IOException, InterruptedException {  
        CyclicBarrier barrier = new CyclicBarrier(3);  
  
        ExecutorService executor = Executors.newFixedThreadPool(3);  
        executor.submit(new Thread(new Runner(barrier, "zhangsan")));  
        executo
4000
r.submit(new Thread(new Runner(barrier, "lisi")));  
        executor.submit(new Thread(new Runner(barrier, "wangwu")));  
  
        executor.shutdown();  
    }  
  
}  

import java.io.IOException;
import java.util.Random;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

class Runner implements Runnable {

private CyclicBarrier barrier;

private String name;

public Runner(CyclicBarrier barrier, String name) {
super();
this.barrier = barrier;
this.name = name;
}

@Override
public void run() {
try {
Thread.sleep(1000 * (new Random()).nextInt(8));
System.out.println(name + " 准备OK.");
barrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
System.out.println(name + " Go!!");
}
}

public class Race {

public static void main(String[] args) throws IOException, InterruptedException {
CyclicBarrier barrier = new CyclicBarrier(3);

ExecutorService executor = Executors.newFixedThreadPool(3);
executor.submit(new Thread(new Runner(barrier, "zhangsan")));
executor.submit(new Thread(new Runner(barrier, "lisi")));
executor.submit(new Thread(new Runner(barrier, "wangwu")));

executor.shutdown();
}

}

 

 

输出:
wangwu 准备OK.

zhangsan 准备OK.

lisi 准备OK.

lisi Go!!

zhangsan Go!!

wangwu Go!!

ThreadPoolExecutor

 

newFixedThreadPool生成一个固定的线程池,顾名思义,线程池的线程是不会释放的,即使它是Idle。这就会产生性能问题,比如如果线程池的大小为200,当全部使用完毕后,所有的线程会继续留在池中,相应的内存和线程切换(while(true)+sleep循环)都会增加。如果要避免这个问题,就必须直接使用ThreadPoolExecutor()来构造。可以像Tomcat的线程池一样设置“最大线程数”、“最小线程数”和“空闲线程keepAlive的时间”。

 

 

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler)
  


 

corePoolSize:池中所保存的线程数,包括空闲线程(非最大同时干活的线程数)。如果池中线程数多于 corePoolSize,则这些多出的线程在空闲时间超过 keepAliveTime 时将会终止。

maximumPoolSize:线程池中最大线程数

keepAliveTime:线程空闲回收的时间

unit:keepAliveTime的单位

workQueue:保存任务的队列,可以如下选择:

 

  无界队列: new LinkedBlockingQueue<Runnable>();
  有界队列: new ArrayBlockingQueue<Runnable>(8);你不想让客户端无限的请求吃光你的CPU和内存吧,那就用有界队列
handler:
当提交任务数大于队列size会抛出
RejectedExecutionException,可选的值为:


 

ThreadPoolExecutor.CallerRunsPolicy 等待队列空闲
ThreadPoolExecutor.DiscardPolicy:丢弃要插入队列的任务
ThreadPoolExecutor.DiscardOldestPolicy:删除队头的任务
关于corePoolSize和maximumPoolSize:

 

 Java官方Docs写道:
当新任务在方法 execute(java.lang.Runnable) 中提交时,如果运行的线程少于 corePoolSize,则创建新线程来处理请求(即使存在空闲线程)。如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列(queue)满时才创建新线程。如果设置的 corePoolSize 和 maximumPoolSize 相同,则创建了固定大小的线程池。如果将 maximumPoolSize 设置为基本的无界值(如
Integer.MAX_VALUE),则允许池适应任意数量的并发任务。
 

 

Java代码


 




public class Test {  
  
    public static void main(String[] args) {  
        BlockingQueue<Runnable> queue = new LinkedBlockingQueue<Runnable>();  
        ThreadPoolExecutor executor = new ThreadPoolExecutor(3, 6, 1, TimeUnit.DAYS, queue);  
  
        for (int i = 0; i < 20; i++) {  
            final int index = i;  
            executor.execute(new Runnable() {  
                public void run() {  
                    try {  
                        Thread.sleep(4000);  
                    } catch (InterruptedException e) {  
                        e.printStackTrace();  
                    }  
                    System.out.println(String.format("thread %d finished", index));  
                }  
            });  
        }  
        executor.shutdown();  
    }  
}  

public class Test {

public static void main(String[] args) {
BlockingQueue<Runnable> queue = new LinkedBlockingQueue<Runnable>();
ThreadPoolExecutor executor = new ThreadPoolExecutor(3, 6, 1, TimeUnit.DAYS, queue);

for (int i = 0; i < 20; i++) {
final int index = i;
executor.execute(new Runnable() {
public void run() {
try {
Thread.sleep(4000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(String.format("thread %d finished", index));
}
});
}
executor.shutdown();
}
}

 

原子变量(Atomic )

并发库中的BlockingQueue是一个比较好玩的类,顾名思义,就是阻塞队列。该类主要提供了两个方法put()和take(),前者将一个对象放到队列中,如果队列已经满了,就等待直到有空闲节点;后者从head取一个对象,如果没有对象,就等待直到有可取的对象。

 

下面的例子比较简单,一个读线程,用于将要处理的文件对象添加到阻塞队列中,另外四个写线程用于取出文件对象,为了模拟写操作耗时长的特点,特让线程睡眠一段随机长度的时间。另外,该Demo也使用到了线程池和原子整型(AtomicInteger),AtomicInteger可以在并发情况下达到原子化更新,避免使用了synchronized,而且性能非常高。由于阻塞队列的put和take操作会阻塞,为了使线程退出,在队列中添加了一个“标识”,算法中也叫“哨兵”,当发现这个哨兵后,写线程就退出。

 

 

Java代码


 




import java.io.File;  
import java.io.FileFilter;  
import java.util.concurrent.BlockingQueue;  
import java.util.concurrent.ExecutorService;  
import java.util.concurrent.Executors;  
import java.util.concurrent.LinkedBlockingQueue;  
import java.util.concurrent.atomic.AtomicInteger;  
  
public class Test {  
  
    static long randomTime() {  
        return (long) (Math.random() * 1000);  
    }  
  
    public static void main(String[] args) {  
        // 能容纳100个文件  
        final BlockingQueue<File> queue = new LinkedBlockingQueue<File>(100);  
        // 线程池  
        final ExecutorService exec = Executors.newFixedThreadPool(5);  
        final File root = new File("D:\\dist\\blank");  
        // 完成标志  
        final File exitFile = new File("");  
        // 读个数  
        final AtomicInteger rc = new AtomicInteger();  
        // 写个数  
        final AtomicInteger wc = new AtomicInteger();  
        // 读线程  
        Runnable read = new Runnable() {  
            public void run() {  
                scanFile(root);  
                scanFile(exitFile);  
            }  
  
            public void scanFile(File file) {  
                if (file.isDirectory()) {  
                    File[] files = file.listFiles(new FileFilter() {  
                        public boolean accept(File pathname) {  
                            return pathname.isDirectory() || pathname.getPath().endsWith(".log");  
                        }  
                    });  
                    for (File one : files)  
                        scanFile(one);  
                } else {  
                    try {  
                        int index = rc.incrementAndGet();  
                        System.out.println("Read0: " + index + " " + file.getPath());  
                        queue.put(file);  
                    } catch (InterruptedException e) {  
                    }  
                }  
            }  
        };  
        exec.submit(read);  
        // 四个写线程  
        for (int index = 0; index < 4; index++) {  
            // write thread  
            final int num = index;  
            Runnable write = new Runnable() {  
                String threadName = "Write" + num;  
  
                public void run() {  
                    while (true) {  
                        try {  
                            Thread.sleep(randomTime());  
                            int index = wc.incrementAndGet();  
                            File file = queue.take();  
                            // 队列已经无对象  
                            if (file == exitFile) {  
                                // 再次添加"标志",以让其他线程正常退出  
                                queue.put(exitFile);  
                                break;  
                            }  
                            System.out.println(threadName + ": " + index + " " + file.getPath());  
                        } catch (InterruptedException e) {  
                        }  
                    }  
                }  
  
            };  
            exec.submit(write);  
        }  
        exec.shutdown();  
    }  
  
}  

import java.io.File;
import java.io.FileFilter;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicInteger;

public class Test {

static long randomTime() {
return (long) (Math.random() * 1000);
}

public static void main(String[] args) {
// 能容纳100个文件
final BlockingQueue<File> queue = new LinkedBlockingQueue<File>(100);
// 线程池
final ExecutorService exec = Executors.newFixedThreadPool(5);
final File root = new File("D:\\dist\\blank");
// 完成标志
final File exitFile = new File("");
// 读个数
final AtomicInteger rc = new AtomicInteger();
// 写个数
final AtomicInteger wc = new AtomicInteger();
// 读线程
Runnable read = new Runnable() {
public void run() {
scanFile(root);
scanFile(exitFile);
}

public void scanFile(File file) {
if (file.isDirectory()) {
File[] files = file.listFiles(new FileFilter() {
public boolean accept(File pathname) {
return pathname.isDirectory() || pathname.getPath().endsWith(".log");
}
});
for (File one : files)
scanFile(one);
} else {
try {
int index = rc.incrementAndGet();
System.out.println("Read0: " + index + " " + file.getPath());
queue.put(file);
} catch (InterruptedException e) {
}
}
}
};
exec.submit(read);
// 四个写线程
for (int index = 0; index < 4; index++) {
// write thread
final int num = index;
Runnable write = new Runnable() {
String threadName = "Write" + num;

public void run() {
while (true) {
try {
Thread.sleep(randomTime());
int index = wc.incrementAndGet();
File file = queue.take();
// 队列已经无对象
if (file == exitFile) {
// 再次添加"标志",以让其他线程正常退出
queue.put(exitFile);
break;
}
System.out.println(threadName + ": " + index + " " + file.getPath());
} catch (InterruptedException e) {
}
}
}

};
exec.submit(write);
}
exec.shutdown();
}

}
 

CountDownLatch

 

从名字可以看出,CountDownLatch是一个倒数计数的锁,当倒数到0时触发事件,也就是开锁,其他人就可以进入了。在一些应用场合中,需要等待某个条件达到要求后才能做后面的事情;同时当线程都完成后也会触发事件,以便进行后面的操作。 

CountDownLatch最重要的方法是countDown()和await(),前者主要是倒数一次,后者是等待倒数到0,如果没有到达0,就只有阻塞等待了。

一个CountDouwnLatch实例是不能重复使用的,也就是说它是一次性的,锁一经被打开就不能再关闭使用了,如果想重复使用,请考虑使用CyclicBarrier。

下面的例子简单的说明了CountDownLatch的使用方法,模拟了100米赛跑,10名选手已经准备就绪,只等裁判一声令下。当所有人都到达终点时,比赛结束。

 

 

Java代码


 




import java.util.concurrent.CountDownLatch;  
import java.util.concurrent.ExecutorService;  
import java.util.concurrent.Executors;  
  
public class Test {  
  
    public static void main(String[] args) throws InterruptedException {  
  
        // 开始的倒数锁  
        final CountDownLatch begin = new CountDownLatch(1);  
  
        // 结束的倒数锁  
        final CountDownLatch end = new CountDownLatch(10);  
  
        // 十名选手  
        final ExecutorService exec = Executors.newFixedThreadPool(10);  
  
        for (int index = 0; index < 10; index++) {  
            final int NO = index + 1;  
            Runnable run = new Runnable() {  
                public void run() {  
                    try {  
                        begin.await();  
                        Thread.sleep((long) (Math.random() * 10000));  
                        System.out.println("No." + NO + " arrived");  
                    } catch (InterruptedException e) {  
                    } finally {  
                        end.countDown();  
                    }  
                }  
            };  
            exec.submit(run);  
        }  
        System.out.println("Game Start");  
        begin.countDown();  
        end.await();  
        System.out.println("Game Over");  
        exec.shutdown();  
    }  
  
}  

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class Test {

public static void main(String[] args) throws InterruptedException {

// 开始的倒数锁
final CountDownLatch begin = new CountDownLatch(1);

// 结束的倒数锁
final CountDownLatch end = new CountDownLatch(10);

// 十名选手
final ExecutorService exec = Executors.newFixedThreadPool(10);

for (int index = 0; index < 10; index++) {
final int NO = index + 1;
Runnable run = new Runnable() {
public void run() {
try {
begin.await();
Thread.sleep((long) (Math.random() * 10000));
System.out.println("No." + NO + " arrived");
} catch (InterruptedException e) {
} finally {
end.countDown();
}
}
};
exec.submit(run);
}
System.out.println("Game Start");
begin.countDown();
end.await();
System.out.println("Game Over");
exec.shutdown();
}

}

 

使用Callable和Future实现线程等待和多线程返回值

 
 假设在main线程启动一个线程,然后main线程需要等待子线程结束后,再继续下面的操作,我们会通过join方法阻塞main线程,代码如下:
 

Java代码


 




Runnable runnable = ...;  
Thread t = new Thread(runnable);  
t.start();  
t.join();  
......  

Runnable runnable = ...;
Thread t = new Thread(runnable);
t.start();
t.join();
......

 通过JDK1.5线程池管理的线程可以使用Callable和Future实现(join()方法无法应用到在线程池线程)
 

Java代码


 




import java.util.concurrent.Callable;  
import java.util.concurrent.ExecutionException;  
import java.util.concurrent.ExecutorService;  
import java.util.concurrent.Executors;  
import java.util.concurrent.Future;  
  
public class Test {  
  
    public static void main(String[] args) throws InterruptedException, ExecutionException {  
        System.out.println("start main thread");  
        final ExecutorService exec = Executors.newFixedThreadPool(5);  
          
        Callable<String> call = new Callable<String>() {  
            public String call() throws Exception {  
                System.out.println("  start new thread.");  
                Thread.sleep(1000 * 5);  
                System.out.println("  end new thread.");  
                return "some value.";  
            }  
        };  
        Future<String> task = exec.submit(call);  
        Thread.sleep(1000 * 2);  
        task.get(); // 阻塞,并待子线程结束,  
        exec.shutdown();  
        exec.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);  
        System.out.println("end main thread");  
    }  
  
}  

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class Test {

public static void main(String[] args) throws InterruptedException, ExecutionException {
System.out.println("start main thread");
final ExecutorService exec = Executors.newFixedThreadPool(5);

Callable<String> call = new Callable<String>() {
public String call() throws Exception {
System.out.println("  start new thread.");
Thread.sleep(1000 * 5);
System.out.println("  end new thread.");
return "some value.";
}
};
Future<String> task = exec.submit(call);
Thread.sleep(1000 * 2);
task.get(); // 阻塞,并待子线程结束,
exec.shutdown();
exec.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
System.out.println("end main thread");
}

}
 

Java代码


 




import java.util.ArrayList;  
import java.util.List;  
import java.util.concurrent.Callable;  
import java.util.concurrent.ExecutionException;  
import java.util.concurrent.ExecutorService;  
import java.util.concurrent.Executors;  
import java.util.concurrent.Future;  
  
/** 
* 多线程返回值测试 
*/  
public class ThreadTest {  
  
    public static void main(String[] args) throws InterruptedException, ExecutionException {  
        System.out.println("start main thread");  
        int threadCount = 5;  
        final ExecutorService exec = Executors.newFixedThreadPool(threadCount);  
  
        List<Future<Integer>> tasks = new ArrayList<Future<Integer>>();  
        for (int i = 0; i < threadCount; i++) {  
            Callable<Integer> call = new Callable<Integer>() {  
                public Integer call() throws Exception {  
                    Thread.sleep(1000);  
                    return 1;  
                }  
            };  
            tasks.add(exec.submit(call));  
        }  
        long total = 0;  
        for (Future<Integer> future : tasks) {  
            total += future.get();  
        }  
        exec.shutdown();  
        System.out.println("total: " + total);  
        System.out.println("end main thread");  
    }  
}  

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

/**
* 多线程返回值测试
*/
public class ThreadTest {

public static void main(String[] args) throws InterruptedException, ExecutionException {
System.out.println("start main thread");
int threadCount = 5;
final ExecutorService exec = Executors.newFixedThreadPool(threadCount);

List<Future<Integer>> tasks = new ArrayList<Future<Integer>>();
for (int i = 0; i < threadCount; i++) {
Callable<Integer> call = new Callable<Integer>() {
public Integer call() throws Exception {
Thread.sleep(1000);
return 1;
}
};
tasks.add(exec.submit(call));
}
long total = 0;
for (Future<Integer> future : tasks) {
total += future.get();
}
exec.shutdown();
System.out.println("total: " + total);
System.out.println("end main thread");
}
}
 
 

CompletionService

这个东西的使用上很类似上面的example,不同的是,它会首先取完成任务的线程。下面的参考文章里,专门提到这个,大家有兴趣可以看下,例子:

 

 

Java代码


 




import java.util.concurrent.Callable;  
import java.util.concurrent.CompletionService;  
import java.util.concurrent.ExecutionException;  
import java.util.concurrent.ExecutorCompletionService;  
import java.util.concurrent.ExecutorService;  
import java.util.concurrent.Executors;  
import java.util.concurrent.Future;  
  
public class Test {  
    public static void main(String[] args) throws InterruptedException,  
    ExecutionException {  
        ExecutorService exec = Executors.newFixedThreadPool(10);  
        CompletionService<String> serv =  
        new ExecutorCompletionService<String>(exec);  
        for (int index = 0; index < 5; index++) {  
            final int NO = index;  
            Callable<String> downImg = new Callable<String>() {  
                public String call() throws Exception {  
                    Thread.sleep((long) (Math.random() * 10000));  
                    return "Downloaded Image " + NO;  
                }  
            };  
            serv.submit(downImg);  
        }  
        Thread.sleep(1000 * 2);  
        System.out.println("Show web content");  
        for (int index = 0; index < 5; index++) {  
            Future<String> task = serv.take();  
            String img = task.get();  
            System.out.println(img);  
        }  
        System.out.println("End");  
        // 关闭线程池  
        exec.shutdown();  
    }  
}  

import java.util.concurrent.Callable;
import java.util.concurrent.CompletionService;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorCompletionService;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class Test {
public static void main(String[] args) throws InterruptedException,
ExecutionException {
ExecutorService exec = Executors.newFixedThreadPool(10);
CompletionService<String> serv =
new ExecutorCompletionService<String>(exec);
for (int index = 0; index < 5; index++) {
final int NO = index;
Callable<String> downImg = new Callable<String>() {
public String call() throws Exception {
Thread.sleep((long) (Math.random() * 10000));
return "Downloaded Image " + NO;
}
};
serv.submit(downImg);
}
Thread.sleep(1000 * 2);
System.out.println("Show web content");
for (int index = 0; index < 5; index++) {
Future<String> task = serv.take();
String img = task.get();
System.out.println(img);
}
System.out.println("End");
// 关闭线程池
exec.shutdown();
}
}

 

 

Semaphore信号量

 

拿到信号量的线程可以进入代码,否则就等待。通过acquire()和release()获取和释放访问许可。下面的例子只允许5个线程同时进入执行acquire()和release()之间的代码

 

 

Java代码


 




import java.util.concurrent.ExecutorService;  
import java.util.concurrent.Executors;  
import java.util.concurrent.Semaphore;  
  
public class Test {  
  
    public static void main(String[] args) {  
        // 线程池  
        ExecutorService exec = Executors.newCachedThreadPool();  
        // 只能5个线程同时访问  
        final Semaphore semp = new Semaphore(5);  
        // 模拟20个客户端访问  
        for (int index = 0; index < 20; index++) {  
            final int NO = index;  
            Runnable run = new Runnable() {  
                public void run() {  
                    try {  
                        // 获取许可  
                        semp.acquire();  
                        System.out.println("Accessing: " + NO);  
                        Thread.sleep((long) (Math.random() * 10000));  
                        // 访问完后,释放  
                        semp.release();  
                    } catch (InterruptedException e) {  
                    }  
                }  
            };  
            exec.execute(run);  
        }  
        // 退出线程池  
        exec.shutdown();  
    }  
  
}  

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

public class Test {

public static void main(String[] args) {
// 线程池
ExecutorService exec = Executors.newCachedThreadPool();
// 只能5个线程同时访问
final Semaphore semp = new Semaphore(5);
// 模拟20个客户端访问
for (int index = 0; index < 20; index++) {
final int NO = index;
Runnable run = new Runnable() {
public void run() {
try {
// 获取许可
semp.acquire();
System.out.println("Accessing: " + NO);
Thread.sleep((long) (Math.random() * 10000));
// 访问完后,释放
semp.release();
} catch (InterruptedException e) {
}
}
};
exec.execute(run);
}
// 退出线程池
exec.shutdown();
}

}

 

 
 

 
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: