您的位置:首页 > 其它

重建二叉树(根据 前序 和 中序二叉树)

2015-07-24 23:06 447 查看








下面是源代码:

#include <stdio.h>

struct BinaryTreeNode
{
int m_nValue;
BinaryTreeNode *m_pLeft;
BinaryTreeNode *m_pRight;
};

BinaryTreeNode *ConstructCore(int *startPreorder, int *endPreorder, int *startInorder, int *endInorder)
{
int rootValue = startPreorder[0];
BinaryTreeNode *root = new BinaryTreeNode();
root->m_nValue = rootValue;
root->m_pLeft = NULL;
root->m_pRight = NULL;

//递归结束条件,当只剩节点时
if(startPreorder == endPreorder)
{
if(startInorder == endInorder && *startPreorder == *startInorder)
{
return root;
}else
{
return NULL;
}
}

int *rootInorder = startInorder;
while(rootInorder <= endInorder && *rootInorder != rootValue)
{
rootInorder++;
}

if(rootInorder > endInorder)
{
printf("无效的输入\n");
}

int leftLength = rootInorder - startInorder;
int rightLength = endInorder - rootInorder;

if(leftLength > 0)
{
root->m_pLeft = ConstructCore(startPreorder + 1, startPreorder + leftLength, startInorder, startInorder + leftLength - 1);
}

if(rightLength > 0)
{
root->m_pRight = ConstructCore(startPreorder + leftLength + 1, endPreorder, rootInorder + 1, endInorder);
}

return root;
}

BinaryTreeNode *Construct(int *preorder, int *inorder, int length)
{
if(preorder == NULL, inorder == NULL, length <= 0)
{
return NULL;
}

return ConstructCore(preorder, preorder + length - 1, inorder, inorder + length - 1);
}

void PrintTreeNode(BinaryTreeNode* pNode)
{
if(pNode != NULL)
{
printf("value of this node is: %d\n", pNode->m_nValue);

if(pNode->m_pLeft != NULL)
printf("value of its left child is: %d.\n", pNode->m_pLeft->m_nValue);
else
printf("left child is null.\n");

if(pNode->m_pRight != NULL)
printf("value of its right child is: %d.\n", pNode->m_pRight->m_nValue);
else
printf("right child is null.\n");
}
else
{
printf("this node is null.\n");
}

printf("\n");
}

void PrintTree(BinaryTreeNode* pRoot)
{
PrintTreeNode(pRoot);

if(pRoot != NULL)
{
if(pRoot->m_pLeft != NULL)
PrintTree(pRoot->m_pLeft);

if(pRoot->m_pRight != NULL)
PrintTree(pRoot->m_pRight);
}
}

void DestroyTree(BinaryTreeNode* pRoot)
{
if(pRoot != NULL)
{
BinaryTreeNode* pLeft = pRoot->m_pLeft;
BinaryTreeNode* pRight = pRoot->m_pRight;

delete pRoot;
pRoot = NULL;

DestroyTree(pLeft);
DestroyTree(pRight);
}
}

void main()
{
const int length = 8;
int preorder[length] = {1, 2, 4, 7, 3, 5, 6, 8};
int inorder[length] = {4, 7, 2, 1, 5, 3, 8, 6};

BinaryTreeNode *root = Construct(preorder, inorder, length);
PrintTree(root);
DestroyTree(root);
}


运行结果:



注:本题用递归解,首先得分析好每次递归做的相同事情是什么,其次,判断终止条件;最后,注意边界条件和异常处理。

递归虽然简洁,但它同时也有显著的缺点。

1、递归由于是函数调用自身,而函数调用是有时间和空间消耗的:每一次函数调用,都需要在内存栈中分配空间以保存参数、返回地址及临时变量,而且往栈里面压入数据和弹出数据都需要时间。这就不难理解递归效率不如非递归。

2、递归可能会引起严重的问题:调用栈溢出。前面分析中提到徐哎哟为每一次函数调用在内存栈中分配空间,而每个进程的栈的容量是有限的。递归调用的层级太多时,就会超出栈的容量,从而导致调用栈溢出。

参考:

剑指offer
http://blog.csdn.net/zhaojinjia/article/details/9305251 http://blog.csdn.net/ljf913/article/details/8576771
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: