您的位置:首页 > 运维架构 > Linux

linux设备树笔记__基于msm8x10的基本分析

2015-04-17 16:38 615 查看
由文章,linux设备树笔记__dts基本概念及语法,我们知道了基本概念,知道了大概的设备树节点及其属性,而节点下的属性大多是自定义,除了保留的几个属性,大多从.dts是无法知道其用途的,这个就需要看驱动是如何解析属性值的了,这点也可作技术细节的部分隐藏。

在源码的msm8x12\kernel\arch\arm\boot\dts下有很多xxx.dts,xxx.dtsi,一般一个board就有一个.dts,所以你能看见很多dts文件,即使一个SOC也可能有不同的dts,这样不同的dts会共用很多的设备,那么.dtsi就是起共用设备树的作用,一个板子dts可以像C语言一样来包含dtsi,如/include/ "msm8612-qrd-camera-sensor.dtsi"。

msm8x12\kernel\arch\arm\mach-msm\Makefile.boot关于编译msm8x12的dts部分。

# MSM8610
zreladdr-$(CONFIG_ARCH_MSM8610)	:= 0x00008000
dtb-$(CONFIG_ARCH_MSM8610)	+= msm8610-v1-cdp.dtb
dtb-$(CONFIG_ARCH_MSM8610)	+= msm8610-v2-cdp.dtb
dtb-$(CONFIG_ARCH_MSM8610)	+= msm8610-v1-mtp.dtb
dtb-$(CONFIG_ARCH_MSM8610)	+= msm8610-v2-mtp.dtb
dtb-$(CONFIG_ARCH_MSM8610)	+= msm8610-rumi.dtb
dtb-$(CONFIG_ARCH_MSM8610)	+= msm8610-sim.dtb
dtb-$(CONFIG_ARCH_MSM8610)	+= msm8610-v1-qrd-skuaa.dtb
dtb-$(CONFIG_ARCH_MSM8610)	+= msm8610-v1-qrd-skuab.dtb
dtb-$(CONFIG_ARCH_MSM8610)	+= msm8610-v2-qrd-skuaa.dtb
dtb-$(CONFIG_ARCH_MSM8610)	+= msm8610-v2-qrd-skuab.dtb
ifeq ($(CONFIG_ARCH_MSM8610_CB01),y)
dtb-$(CONFIG_ARCH_MSM8610) += board-seuic-cb01.dtb
endif
ifeq ($(CONFIG_ARCH_MSM8610_D330S),y)
dtb-$(CONFIG_ARCH_MSM8610) += board-seuic-d330s.dtb
endif
ifeq ($(CONFIG_ARCH_MSM8610_D500),y)
dtb-$(CONFIG_ARCH_MSM8610) += board-seuic-d500.dtb
endif
ifeq ($(CONFIG_ARCH_MSM8610_D510),y)
dtb-$(CONFIG_ARCH_MSM8610) += board-seuic-d510.dtb
endif


在msm8x12的SOC我们有3个板子型号,假设我们选择的是d500的型号,那么我们一般的不同硬件配置相关都是在board-seuci-d500.dtb中修改,其他的dtb目标文件都是共有的硬件配置,因为我们都是一样的SOC嘛。

/ {
model = "Qualcomm MSM 8610v2 QRD SKUAB D510";
compatible = "qcom,msm8610-qrd", "qcom,msm8610", "qcom,qrd";
qcom,board-id = <0x6000b 3>;
};


其中model和compatible每个板子都有,前者是SOC描述,后者是board型号,后者一般用公司名加上soc型号组合,多个值表示兼容board,并且不要和其他board重名,qcom,board-id是自定义的,有的板子还有qcom,msm-id。

板子中的设备节点一般通过compatible来标示查找的,下面提取board-seuic-d500.dtb的部分设备进行解析并查看驱动是如何利用的:

LED设备:

&soc {
...
gpio-leds {
compatible = "gpio-leds";//驱动要匹配的关键字
status = "ok";

/*  scan_led  */
red1_led {
gpios = <&pm8110_gpios 1 0x0>;
label = "scan";
linux,default-trigger = "heartbeat";
default-state = "off";
};
/*  charge_ing  */
red2_led {
gpios = <&pm8110_gpios 3 0x0>;
label = "red1";
linux,default-trigger = "battery-charging";
default-state = "off";
retain-state-suspended = "yes";
};
/*  charge_complete  */
green_led {
gpios = <&pm8110_gpios 2 0x0>;
label = "green1";
linux,default-trigger = "battery-full";
default-state = "off";
retain-state-suspended = "yes";
};
};
...
};
设备树中的SOC下一级的设备gpio-leds,有三个子节点,分别是扫描灯,充电中指示灯,充电完成指示灯,下面以充电完成指示灯来说明。

对应的驱动在msm8x12\kernel\drivers\leds\leds-gpio.c,驱动中使用of相关驱动来解析dts,且全局宏为CONFIG_OF_GPIO。

驱动中在probe前要匹配的关键字是compatible的值,如下,并且匹配优先级of_match_table > id_table > driver.name,且不管是id_table还是of_match_table都要以一个空元素结尾。

static const struct of_device_id of_gpio_leds_match[] = {
{ .compatible = "gpio-leds", },
{},
};
static struct platform_driver gpio_led_driver = {
.probe		= gpio_led_probe,
.remove		= __devexit_p(gpio_led_remove),
.driver		= {
.name	= "leds-gpio",
.owner	= THIS_MODULE,
.of_match_table = of_gpio_leds_match,
},
};

module_platform_driver(gpio_led_driver);
匹配成功后才会调用probe,其中module_platform_driver(gpio_led_driver)是一个模块初始化和退出的宏:

#define module_platform_driver(__platform_driver) \
static int __init __platform_driver##_init(void) \
{ \
return platform_driver_register(&(__platform_driver)); \
} \
module_init(__platform_driver##_init); \
static void __exit __platform_driver##_exit(void) \
{ \
platform_driver_unregister(&(__platform_driver)); \
} \
module_exit(__platform_driver##_exit);

gpio_led_probe->gpio_leds_create_of()函数就是解析上述LED设备节点的过程:

static struct gpio_leds_priv * __devinit gpio_leds_create_of(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node, *child;
struct gpio_leds_priv *priv;
int count = 0, ret;

/* count LEDs in this device, so we know how much to allocate */
for_each_child_of_node(np, child)
count++;
if (!count)
return NULL;

priv = kzalloc(sizeof_gpio_leds_priv(count), GFP_KERNEL);
if (!priv)
return NULL;

for_each_child_of_node(np, child) {
struct gpio_led led = {};
enum of_gpio_flags flags;
const char *state;
const char *retain_state;

led.gpio = of_get_gpio_flags(child, 0, &flags);//获取gpio序号及有效标志,实际上是通过gpios属性获取
led.active_low = flags & OF_GPIO_ACTIVE_LOW;//如为OF_GPIO_ACTIVE_LOW即值为1,那么点亮set 0就是set 1,要进行逻辑取反
led.name = of_get_property(child, "label", NULL) ? : child->name;//label属性为子节点设备名
led.default_trigger =//默认的LED trigger
of_get_property(child, "linux,default-trigger", NULL);
state = of_get_property(child, "default-state", NULL);//开机默认的LED状态
if (state) {
if (!strcmp(state, "keep"))
led.default_state = LEDS_GPIO_DEFSTATE_KEEP;
else if (!strcmp(state, "on"))
led.default_state = LEDS_GPIO_DEFSTATE_ON;
else
led.default_state = LEDS_GPIO_DEFSTATE_OFF;
}
retain_state = of_get_property(child, "retain-state-suspended", NULL);//休眠时LED的状态
if (retain_state) {
if (!strcmp(retain_state, "yes"))
led.retain_state_suspended = 1;
else
led.retain_state_suspended = 0;
}

ret = create_gpio_led(&led, &priv->leds[priv->num_leds++],//创建LED设备
&pdev->dev, NULL);
if (ret < 0) {
of_node_put(child);
goto err;
}
}

return priv;

err:
for (count = priv->num_leds - 2; count >= 0; count--)
delete_gpio_led(&priv->leds[count]);
kfree(priv);
return NULL;
}
如驱动中所示,大多通过of_xxx的API函数来解析dts设备节点属性,属性就是KEY-VALUE结构,至于值的意义完全由驱动来控制。比如of_get_property(child, "linux,default-trigger", NULL),其中child是当前设备节点,参数二就是待查找的属性,返回值是对应属性的值,此处就是对应于DTS的linux,default-trigger = "battery-full",进行解析,返回值应该为“battery-full”,至于这个LED
trigger的意义及用法见我的另一篇文章《linux驱动____LED子系统笔记》。

NOTE:另外需要注意的是,对于属性名,是否可以随意定义,要看of的API代码,比如gpios属性名是API里使用的,用来指示使用的gpio号及有效标志位,就必须这么用不能改名;

/**
* of_get_gpio_flags() - Get a GPIO number and flags to use with GPIO API
* @np:		device node to get GPIO from
* @index:	index of the GPIO
* @flags:	a flags pointer to fill in
*
* Returns GPIO number to use with Linux generic GPIO API, or one of the errno
* value on the error condition. If @flags is not NULL the function also fills
* in flags for the GPIO.
*/
static inline int of_get_gpio_flags(struct device_node *np, int index,
enum of_gpio_flags *flags)
{
return of_get_named_gpio_flags(np, "gpios", index, flags);
}


而对于像"linux,default-trigger"是可以随便定义的,因为它唯一使用的地方就是使用of相关API在驱动中获取属性值,完全由驱动开发者的思维逻辑控制的。

触屏

下面再举1个触屏的例子,同一个I2C总线挂了多个设备,DTS代码只贴出2个:

&soc {
...
i2c@f9923000{
/*synaptics v2.3 DS4/DS5*/
synaptics_dsx@20 {//节点一般以设备名@addr组合
compatible = "synaptics,dsx";//触屏设备名
reg = <0x20>;//从设备I2C地址
interrupt-parent = <&msmgpio>;//I2C的中断给谁处理
interrupts = <1 0x2002>;//I2C中断给msmgpio处理,后面详细解释
vdd-supply = <&pm8110_l19>;//I2C设备的VDD由电源管理芯片pm8110的pin_114供电
vcc_i2c-supply = <&pm8110_l14>;//与上类似
synaptics,pwr-reg-name = "vdd";//供电名
synaptics,bus-reg-name = "vcc_i2c";//与上类似
synaptics,irq-gpio = <&msmgpio 1 0x2008>;//具体中断资源连那个gpio
synaptics,irq-flags = <0x2002>;/* IRQF_ONESHOT | IRQF_TRIGGER_FALLING */
synaptics,power-delay-ms = <160>;
synaptics,reset-delay-ms = <100>;
synaptics,swap-axes;
//synaptics,x-flip;
synaptics,y-flip;
synaptics,irq-on-state = <0>;
};

akm09911@d {
compatible = "qcom,nfc-akm09911";//电子罗盘设备名
reg = <0x0d>;//I2C从地址
vdd-supply = <&pm8110_l19>;
vio-supply = <&pm8110_l14>;
akm09911,layout = <3>; //厂商定制的芯片贴片时的布局标志
akm09911,reset-pin = <35>;
};
}
...
}


驱动解析在msm8x12\kernel\drivers\input\touchscreen\synaptics_dsx\synaptics_dsx_i2c.c

dts设备匹配驱动,我们的DTS中compatible = "synaptics,dsx"与of_match_table是中的值是一致的,匹配成功!

#ifdef CONFIG_OF
static struct of_device_id synaptics_rmi4_of_match_table[] = {
{
.compatible = "synaptics,dsx",
},
{},
};
MODULE_DEVICE_TABLE(of, synaptics_rmi4_of_match_table);
#else
#define synaptics_rmi4_of_match_table NULL
#endif
static const struct i2c_device_id synaptics_rmi4_id_table[] = {
{"synaptics_dsx_i2c", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, synaptics_rmi4_id_table);
static struct i2c_driver synaptics_rmi4_i2c_driver = {
.driver = {
.name = I2C_DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = synaptics_rmi4_of_match_table,
},
.probe = synaptics_rmi4_i2c_probe,
.remove = __devexit_p(synaptics_rmi4_i2c_remove),
.id_table = synaptics_rmi4_id_table,
};


在synaptics_rmi4_i2c_probe()->parse_dt()中,

static int parse_dt(struct device *dev, struct synaptics_dsx_board_data *bdata)
{
int retval;
u32 value;
const char *name;
struct property *prop;
struct device_node *np = dev->of_node;

bdata->irq_gpio = of_get_named_gpio_flags(np,//中断gpio号,忽略flag
"synaptics,irq-gpio", 0, NULL);

retval = of_property_read_u32(np, "synaptics,irq-on-state",//中断处理时gpio电平是H还是L
&value);
if (retval < 0)
bdata->irq_on_state = 0;
else
bdata->irq_on_state = value;

retval = of_property_read_u32(np, "synaptics,irq-flags", &value);//中断触发处理标志
if (retval < 0)
return retval;
else
bdata->irq_flags = value;

retval = of_property_read_string(np, "synaptics,pwr-reg-name", &name);//供电名,作为后面regulator_get的参数id
if (retval == -EINVAL)
bdata->pwr_reg_name = NULL;
else if (retval < 0)
return retval;
else
bdata->pwr_reg_name = name;

retval = of_property_read_string(np, "synaptics,bus-reg-name", &name);//同上
if (retval == -EINVAL)
bdata->bus_reg_name = NULL;
else if (retval < 0)
return retval;
else
bdata->bus_reg_name = name;

if (of_property_read_bool(np, "synaptics,power-gpio")) {//DTS未使用到。上电时,power_gpio初始状态
bdata->power_gpio = of_get_named_gpio_flags(np,
"synaptics,power-gpio", 0, NULL);
retval = of_property_read_u32(np, "synaptics,power-on-state",
&value);
if (retval < 0)
return retval;
else
bdata->power_on_state = value;
} else {
bdata->power_gpio = -1;
}

if (of_property_read_bool(np, "synaptics,power-delay-ms")) {//电源上电或resume时要等待的时间
retval = of_property_read_u32(np, "synaptics,power-delay-ms",
&value);
if (retval < 0)
return retval;
else
bdata->power_delay_ms = value;
} else {
bdata->power_delay_ms = 0;
}

if (of_property_read_bool(np, "synaptics,reset-gpio")) {//DTS未使用
bdata->reset_gpio = of_get_named_gpio_flags(np,
"synaptics,reset-gpio", 0, NULL);
retval = of_property_read_u32(np, "synaptics,reset-on-state",
&value);
if (retval < 0)
return retval;
else
bdata->reset_on_state = value;
retval = of_property_read_u32(np, "synaptics,reset-active-ms",
&value);
if (retval < 0)
return retval;
else
bdata->reset_active_ms = value;
} else {
bdata->reset_gpio = -1;
}

if (of_property_read_bool(np, "synaptics,reset-delay-ms")) {//执行soft-reset时的等待时间
retval = of_property_read_u32(np, "synaptics,reset-delay-ms",
&value);
if (retval < 0)
return retval;
else
bdata->reset_delay_ms = value;
} else {
bdata->reset_delay_ms = 0;
}

if (of_property_read_bool(np, "synaptics,max-y-for-2d")) {//DTS未使用,触屏报点的Y方向最大值
retval = of_property_read_u32(np, "synaptics,max-y-for-2d",
&value);
if (retval < 0)
return retval;
else
bdata->max_y_for_2d = value;
} else {
bdata->max_y_for_2d = -1;
}

bdata->swap_axes = of_property_read_bool(np, "synaptics,swap-axes");//触屏报点X,Y交换

bdata->x_flip = of_property_read_bool(np, "synaptics,x-flip");//X值变为关于X中轴对称

bdata->y_flip = of_property_read_bool(np, "synaptics,y-flip");//Y值变为关于Y中轴对称

prop = of_find_property(np, "synaptics,cap-button-codes", NULL);//DTS未使用
if (prop && prop->length) {
bdata->cap_button_map->map = devm_kzalloc(dev,
prop->length,
GFP_KERNEL);
if (!bdata->cap_button_map->map)
return -ENOMEM;
bdata->cap_button_map->nbuttons = prop->length / sizeof(u32);
retval = of_property_read_u32_array(np,
"synaptics,cap-button-codes",
bdata->cap_button_map->map,
bdata->cap_button_map->nbuttons);
if (retval < 0) {
bdata->cap_button_map->nbuttons = 0;
bdata->cap_button_map->map = NULL;
}
} else {
bdata->cap_button_map->nbuttons = 0;
bdata->cap_button_map->map = NULL;
}

prop = of_find_property(np, "synaptics,vir-button-codes", NULL);//DTS未使用
if (prop && prop->length) {
bdata->vir_button_map->map = devm_kzalloc(dev,
prop->length,
GFP_KERNEL);
if (!bdata->vir_button_map->map)
return -ENOMEM;
bdata->vir_button_map->nbuttons = prop->length / sizeof(u32);
bdata->vir_button_map->nbuttons /= 5;
retval = of_property_read_u32_array(np,
"synaptics,vir-button-codes",
bdata->vir_button_map->map,
bdata->vir_button_map->nbuttons * 5);
if (retval < 0) {
bdata->vir_button_map->nbuttons = 0;
bdata->vir_button_map->map = NULL;
}
} else {
bdata->vir_button_map->nbuttons = 0;
bdata->vir_button_map->map = NULL;
}

return 0;
}


of_get_named_gpio_flags(np, "synaptics,irq-gpio", 0, NULL)从DTS中获取中断gpio即触屏的中断连接到soc哪个GPIO上,然后调用request_threaded_irq申请中断及处理函数。

of_property_read_u32(np, "synaptics,irq-on-state", &value),中断中使用:

static irqreturn_t synaptics_rmi4_irq(int irq, void *data)
{
struct synaptics_rmi4_data *rmi4_data = data;
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;

if (gpio_get_value(bdata->irq_gpio) != bdata->irq_on_state)//当前中断线gpio值与irq_on_state值一致才会报点
goto exit;

synaptics_rmi4_sensor_report(rmi4_data);

exit:
return IRQ_HANDLED;
}
of_property_read_u32(np, "synaptics,irq-flags", &value)是request_threaded_irq()申请中断处理资源的中断方式标志,对应于DTS中的synaptics,irq-flags = <0x2002>,那么这个值是什么意思,就是使用标准的中断方式定义,在msm8x12\kernel\include\linux\interrupt.h中有定义:

//hardware interrupt line behaviour flags
#define IRQF_TRIGGER_NONE	0x00000000
#define IRQF_TRIGGER_RISING	0x00000001
#define IRQF_TRIGGER_FALLING	0x00000002
#define IRQF_TRIGGER_HIGH	0x00000004
#define IRQF_TRIGGER_LOW	0x00000008
#define IRQF_TRIGGER_MASK	(IRQF_TRIGGER_HIGH | IRQF_TRIGGER_LOW | \
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING)
#define IRQF_TRIGGER_PROBE	0x00000010
//used only by the kernel as part of the irq handling routines.
#define IRQF_DISABLED		0x00000020
#define IRQF_SAMPLE_RANDOM	0x00000040
#define IRQF_SHARED		0x00000080
#define IRQF_PROBE_SHARED	0x00000100
#define __IRQF_TIMER		0x00000200
#define IRQF_PERCPU		0x00000400
#define IRQF_NOBALANCING	0x00000800
#define IRQF_IRQPOLL		0x00001000
#define IRQF_ONESHOT		0x00002000
#define IRQF_NO_SUSPEND		0x00004000
#define IRQF_FORCE_RESUME	0x00008000
#define IRQF_NO_THREAD		0x00010000
#define IRQF_EARLY_RESUME	0x00020000

#define IRQF_TIMER		(__IRQF_TIMER | IRQF_NO_SUSPEND | IRQF_NO_THREAD)
中断标志定义都是掩码,基本常用的就是上下降沿、高低电平,还有常用的IRQF_DISABLED进行或组合。上述DTS的中断标志0x2002就是IRQF_ONESHOT | IRQF_TRIGGER_FALLING,即下降沿触发中断,且在中断thread未完成前不开放中断。

of_property_read_string(np, "synaptics,pwr-reg-name", &name)对应于DTS的synaptics,pwr-reg-name = "vdd",实际上是regulator的id,根据这个"vdd"的id,可查找到系统中的vdd-supply,然后控制供电行为的enable和disable。那么此处是如何做的呢?!

synaptics_rmi4_probe()->

synaptics_rmi4_get_reg()->

regulator_get(rmi4_data->pdev->dev.parent,bdata->pwr_reg_name)->

_regulator_get->

regulator_dev_lookup->

of_get_regulator->

regnode = of_parse_phandle(dev->of_node, prop_name, 0)

最后一个函数使用snprintf(prop_name, 32, "%s-supply", supply),也就是说返回的regnode是对应于id为“vdd-supply”的设备节点;说到底对于struct regulator *regulator_get(struct device *dev, const char *id),他对于dts的处理就是查找id为"$(id)-supply"对应的dts属性值指向的regulator并返回(此处对应于DTS的vdd-supply
= <&pm8110_l19>,就是查找pm8110_119所引用的regulator并返回),这样驱动就能去控制供电行为了。这样在触屏suspend()和resume()是去对应调用regulator_disable()和regulator_enable()进行供电的关和开。

其他DTS属性大多是这样用的。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: