您的位置:首页 > 理论基础 > 数据结构算法

看数据结构写代码(40) 无向图的深度优先生成树与广度优先生成树

2015-04-11 23:50 1191 查看
图的深度优先遍历 和 广度 优先 遍历 算法中的 每一次 最外层 循环 都 产生 一个 无向图 的 连通分量,每一个连通分量,都可以产生一个生成树,将这些生成树合在 一起 就是 一个 森林。 用 树的 孩子 兄弟 链表 表示法 来 表示 这个 森林, 就是 这一节 算法的  内容。

深度优先森林 代码 :

//深度优先生成森林
void dfsTree(AMLGraph g,int i,Tree * t,bool isVisited[]){
isVisited[i] = true;
bool isFirst = true;
Tree p,q = NULL;
for (int next = firstAdj(g,i); next != -1; next = nextAdj(g,i,next)){
if (isVisited[next] == false){
p = makeTreeNode(g.adjMuList[next].vexName);
if (isFirst){
(*t)->firstChild = p,isFirst = false;
}
else{
q->nextSibling = p;
}
q = p;
dfsTree(g,next,&q,isVisited);
}

}
}

void dfsForest(AMLGraph g,Tree * t){
bool isVisited[MAX_VEX_NUM] = {false};
*t = NULL;
Tree p,q;
for (int i = 0; i < g.vexNum; i++){
if (isVisited[i] == false){
p = makeTreeNode(g.adjMuList[i].vexName);//每一次循环都是一颗生成树.
if (*t == NULL){//第一个是根节点
*t = p;
}
else{//其余生成树 是 第一颗 生成树的 兄弟
q->nextSibling = p;
}
q = p;//保存上一个树
dfsTree(g,i,&q,isVisited);
}
}
}
广度优先生成森林代码:

//广度优先生成森林
void bfsForest(AMLGraph g,Tree * t){
bool isVisited[MAX_VEX_NUM] = {false};
Tree treeArray[MAX_VEX_NUM] = {NULL};//记录所有顶点的 树节点坐标.
//因为要 找到 遍历的 树节点的 父亲 是谁.(这一句p = treeArray[top];)
Tree p,q,r;
LinkQueue queue;
queueInit(&queue);
for (int i = 0; i < g.vexNum; i++){
if (isVisited[i] == false){
p = makeTreeNode(g.adjMuList[i].vexName);
if (i == 0){//第一颗生成树..
*t = p;
}
else{//其他生成树是 第一颗生成树的 孩子兄弟链表的 兄弟
//(*t)->nextSibling = p; 这样写 就只有 一个兄弟节点了..
q->nextSibling = p;
}
q = p;
treeArray[i] = p;
isVisited[i] = true;
enqueue(&queue,i);
while (!queueEmpty(queue)){
int top;
dequeue(&queue,&top);
bool isFirst = true;
for (int next = firstAdj(g,top);next != -1; next = nextAdj(g,top,next)){
if (isVisited[next] == false){
isVisited[next] = true;
r = makeTreeNode(g.adjMuList[next].vexName);
treeArray[next] = r;
if (isFirst){
p = treeArray[top];
p->firstChild = r,isFirst = false;
}
else{
p->nextSibling = r;
}
p = r;
enqueue(&queue,next);
}
}
}
}
}
queueDestory(&queue);
}
在写广度 优先生成森林代码中,犯了 两个错误:

1.

//(*t)->nextSibling = p; 这样写 就只有 一个兄弟节点了..

q->nextSibling = p;

2.

没有 写 这句话:

p = treeArray[top];

后来 将所有 顶点的坐标 存到 数组中,好查找 节点的 父亲节点。

详细源代码如下:

工程文件网盘地址:点击打开链接

// AMLGraph.cpp : 定义控制台应用程序的入口点。
//无向图的邻接多重表

#include "stdafx.h"
#include <cstdlib>
#include "queue.h"
#include "BinaryTree.h"

#define MAX_VEX_NUM 20

enum E_VisitIf
{
unvisited = 0,
visited = 1,
};
struct ArcNode
{
E_VisitIf mark;
int iIndex,jIndex;//顶点i,j在图中的位置
ArcNode * iNext;//与i顶点点相关的下一个弧
ArcNode * jNext;//与j顶点点相关的下一个弧
};

struct VNode
{
char vexName;
ArcNode * head;//头指针
};

struct AMLGraph
{
VNode adjMuList[MAX_VEX_NUM];//顶点数组
int vexNum,arcNum;
};

//获取弧 的 头节点
ArcNode * getHeadNode(){
ArcNode * pNode = (ArcNode *)malloc(sizeof(ArcNode));
if (pNode){
pNode->iIndex = pNode->jIndex = -1;
pNode->iNext = pNode->jNext = NULL;
pNode->mark = unvisited;
}
return pNode;
}

ArcNode * getArcNode(int iIndex,int jIndex){
ArcNode * pNode = getHeadNode();
if (pNode){
pNode->iIndex = iIndex;
pNode->jIndex = jIndex;
}
return pNode;
}

int vexLocation(AMLGraph g,char vex){
for (int i = 0; i < g.vexNum; i++){
if (g.adjMuList[i].vexName == vex){
return i;
}
}
return -1;
}

void createGrahp(AMLGraph * g){
printf("输入图的顶点数 和 边(弧)数\n");
scanf("%d%d%*c",&g->vexNum,&g->arcNum);
//构造顶点集
printf("请输入顶点集\n");
for (int i = 0; i < g->vexNum; i++){
char name;
scanf("%c",&name);
g->adjMuList[i].vexName = name;
g->adjMuList[i].head = getHeadNode();//建立 头节点,并让头指针指向头节点
}
//构造顶点关系
fflush(stdin);
printf("请输入顶点的关系\n");
for (int i = 0; i < g->arcNum; i++){
char vex1,vex2;
scanf("%c%c%*c",&vex1,&vex2);
int location1 = vexLocation(*g,vex1);
int location2 = vexLocation(*g,vex2);
ArcNode * pNode = getArcNode(location1,location2);
pNode->iNext = g->adjMuList[location1].head->iNext;
g->adjMuList[location1].head->iNext = pNode;
pNode->jNext = g->adjMuList[location2].head->iNext;
g->adjMuList[location2].head->iNext = pNode;
}
}

void destoryGraph(AMLGraph * g){
for (int i = 0; i < g->vexNum; i++){
ArcNode * next = g->adjMuList[i].head->iNext;
while (next != NULL){
ArcNode * freeNode = next;
next = next->iIndex == i ? next->iNext : next->jNext;
if (freeNode->iIndex == i){////只释放 iIndex 等于 i的节点,要不会多次释放
free(freeNode);
}
}
free(g->adjMuList[i].head);
g->adjMuList[i].head = NULL;
g->adjMuList[i].vexName = ' ';
g->vexNum = g->arcNum = 0;
}
}

//顶点vex1 和顶点vex2 是否相邻
bool graphIsAdj(AMLGraph g,char vex1,char vex2){
int location = vexLocation(g,vex1);
ArcNode * next = g.adjMuList[location].head->iNext;
while (next != NULL){
if (g.adjMuList[next->iIndex].vexName == vex2 || g.adjMuList[next->jIndex].vexName == vex2){
return true;
}
next = next->iIndex == location ? next->iNext : next->jNext;
}
return false;
}

int graphDegree(AMLGraph g,char vex){
int degree = 0;
int location = vexLocation(g,vex);
ArcNode * next = g.adjMuList[location].head->iNext;//计算所有出度
while (next != NULL){
degree++;
next = next->iIndex == location ? next->iNext : next->jNext;
}
return degree;
}

//插入边(弧)
void insertArc(AMLGraph * g,char vex1,char vex2){
int location1 = vexLocation(*g,vex1);
int location2 = vexLocation(*g,vex2);
ArcNode * node = getArcNode(location1,location2);
node->iNext = g->adjMuList[location1].head->iNext;
g->adjMuList[location1].head->iNext = node;
node->jNext = g->adjMuList[location2].head->iNext;
g->adjMuList[location2].head->iNext = node;
g->arcNum ++;
}
//删除边(弧)
void deleteArc(AMLGraph * g,char vex1,char vex2){
g->arcNum--;
int location1 = vexLocation(*g,vex1);
int location2 = vexLocation(*g,vex2);
ArcNode * next = g->adjMuList[location1].head->iNext;
ArcNode * pre = g->adjMuList[location1].head;
while (next != NULL){
if (next->iIndex == location2){
if (pre == g->adjMuList[location1].head || pre->iIndex == location1){//删除的是第一个节点.或者 前驱的index = location1
pre->iNext = next->jNext;
}
else{
pre->jNext = next->jNext;
}
break;
}
else if(next->jIndex == location2){
if (pre == g->adjMuList[location1].head || pre->iIndex == location1){//删除的是第一个节点.或者 前驱的index = location1
pre->iNext = next->iNext;
}
else{
pre->jNext = next->iNext;
}
break;
}
pre = next;
next = next->iIndex == location1 ? next->iNext : next->jNext;
}
next = g->adjMuList[location2].head->iNext;
pre = g->adjMuList[location2].head;
while (next != NULL){
if (next->iIndex == location1){
if (pre == g->adjMuList[location2].head || pre->iIndex == location2){//删除的是第一个节点.或者 前驱的index = location1
pre->iNext = next->jNext;
}
else{
pre->jNext = next->jNext;
}
free(next);
break;
}
else if(next->jIndex == location1){
if (pre == g->adjMuList[location2].head || pre->iIndex == location2){//删除的是第一个节点.或者 前驱的index = location1
pre->iNext = next->iNext;
}
else{
pre->jNext = next->iNext;
}
free(next);
break;
}
pre = next;
next = next->iIndex == location2 ? next->iNext : next->jNext;
}
}
//插入顶点
void insertVex(AMLGraph * g, char vex){
if (g->vexNum < MAX_VEX_NUM){
g->adjMuList[g->vexNum].vexName = vex;
g->adjMuList[g->vexNum].head = getHeadNode();
g->vexNum++;
}
}
//删除顶点
void deleteVex(AMLGraph * g,char vex){
int location = vexLocation(*g,vex);
//删除顶点 同样需要 遍历整个 图 查找 与 vex 相关的弧节点
for (int i = 0; i < g->vexNum; i++){
ArcNode * next = g->adjMuList[i].head->iNext;
while (next != NULL){
if (next->iIndex == location || next->jIndex == location){
ArcNode * delNode = next;
next = next->iIndex == location ? next->iNext : next->jNext;
char delData1 = g->adjMuList[delNode->iIndex].vexName;
char delData2 = g->adjMuList[delNode->jIndex].vexName;
deleteArc(g,delData1,delData2);
}
else{
next = next->iIndex == location ? next->iNext : next->jNext;
}
}
}
//更改因删除顶点 而导致的元素位置变化..
for (int i = 0; i < g->vexNum; i++){
ArcNode * next = g->adjMuList[i].head->iNext;
while (next != NULL){
if (next->iIndex == i){
if(next->iIndex > location){
next->iIndex --;
}
if(next->jIndex > location){
next->jIndex --;
}
}
next = next->iIndex == location ? next->iNext : next->jNext;
}
}
free(g->adjMuList[location].head);//释放头节点
//vex下面的 顶点上移
for (int i = location + 1; i < g->vexNum; i++){
g->adjMuList[i-1] = g->adjMuList[i];
}
g->vexNum --;
}

void printGrahp(AMLGraph g){
for (int i = 0; i < g.vexNum; i++){
printf("%c的 邻接点有:",g.adjMuList[i].vexName);
ArcNode * next = g.adjMuList[i].head->iNext;//删除所有弧尾
while (next != NULL){
int index = next->iIndex == i ? next->jIndex : next->iIndex;
printf("%c",g.adjMuList[index].vexName);
next = next->iIndex == i ? next->iNext : next->jNext;
}
printf("\n");
}
}

int firstAdj(AMLGraph g,int location){
ArcNode * next = g.adjMuList[location].head->iNext;
if (next != NULL)
{
int index = next->iIndex == location ? next->jIndex : next->iIndex;
return index;
}
return -1;
}

int nextAdj(AMLGraph g,int location1 ,int location2){
ArcNode * next = g.adjMuList[location1].head->iNext;
while (next != NULL){
if (next->iIndex == location2 || next->jIndex == location2){
next = next->iIndex == location1 ? next->iNext : next->jNext;
break;
}
next = next->iIndex == location1 ? next->iNext : next->jNext;
}
if (next != NULL){
int index = next->iIndex == location1 ? next->jIndex : next->iIndex;
return index;
}
return -1;
}
/*
void dfs(AMLGraph g,int i,bool * isVisitedArray){
printf("%c",g.adjMuList[i].vexName);
isVisitedArray[i] = true;
for (int next = firstAdj(g,i); next != -1 ; next = nextAdj(g,i,next)){
if (isVisitedArray[next] == false){
dfs(g,next,isVisitedArray);
}
}
}
//深度优先搜索遍历
void dfsTraver(AMLGraph g){
bool isVisited[MAX_VEX_NUM] = {false};
printf("----------深度优先遍历------------------\n");
for (int i = 0; i < g.vexNum; i++){
if (isVisited[i] == false){
dfs(g,i,isVisited);
}
}
printf("\n");
}
//广度优先搜索遍历
void bfsTraverse(AMLGraph g){
bool isVisited[MAX_VEX_NUM] = {false};
printf("----------广度优先遍历------------------\n");
LinkQueue queue;
queueInit(&queue);
for (int i = 0; i < g.vexNum; i++){
if (isVisited[i] == false){
printf("%c",g.adjMuList[i].vexName);
isVisited[i] = true;
enqueue(&queue,i);
while (!queueEmpty(queue)){
int top;
dequeue(&queue,&top);
for (int next = firstAdj(g,top);next != -1 ; next = nextAdj(g,top,next)){
if (isVisited[next] == false){
printf("%c",g.adjMuList[next].vexName);
isVisited[next] = true;
enqueue(&queue,next);
}
}
}
}
}
queueDestory(&queue);
}

void dfsTree(AMLGraph g,int v,Tree * t,bool * isVisited){
isVisited[v] = true;
bool first = true;
Tree p,q= NULL;
for (int next = firstAdj(g,v);next != -1 ;next = nextAdj(g,v,next)){
if (isVisited[next] == false){
p = makeTreeNode(g.adjMuList[next].vexName);
if (first){
(*t)->firstChild = p;first = false;
}
else{
q->nextSibling = p;
}
q = p;
dfsTree(g,next,&q,isVisited);
}
}
}

//深度优先遍历生成森林
void dfsForest(AMLGraph g,Tree * tree){
bool isVisited[MAX_VEX_NUM] = {false};
*tree = NULL;
Tree p,q;
for (int i = 0; i <g.vexNum ; i++){
if (isVisited[i] == false){
p = makeTreeNode(g.adjMuList[i].vexName);
if (!*tree){
*tree = p;//根节点.
}
else{
q->nextSibling = p;
}
}
q = p;//q指向当前生成树的根..
dfsTree(g,i,&p,isVisited);
}
}
*/
void dfs(AMLGraph g,int i,bool isVisited[]){
printf("%c",g.adjMuList[i].vexName);
isVisited[i] = true;
for (int next = firstAdj(g,i); next != -1; next = nextAdj(g,i,next)){
if (isVisited[next] == false){
dfs(g,next,isVisited);
}
}
}

//深搜
void dfsTraverse(AMLGraph g){
bool isVisited[MAX_VEX_NUM] = {false};
printf("---------深度优先搜索遍历---------\n");
for (int i = 0; i < g.vexNum; i++){
if (isVisited[i] == false){//未访问过
dfs(g,i,isVisited);
}
}
printf("\n");
}

//广搜
void bfsTraverse(AMLGraph g){
bool isVisited[MAX_VEX_NUM] = {false};
printf("---------广度优先搜索遍历---------\n");
LinkQueue queue;
queueInit(&queue);
for (int i = 0; i < g.vexNum; i++){
if (isVisited[i] == false){
enqueue(&queue,i);
printf("%c",g.adjMuList[i].vexName);
isVisited[i] = true;
while (!queueEmpty(queue)){
int top;
dequeue(&queue,&top);
for (int next = firstAdj(g,top); next != -1; next = nextAdj(g,top,next)){
if (isVisited[next] == false){
printf("%c",g.adjMuList[next].vexName);
isVisited[next] = true;
enqueue(&queue,next);
}
}
}
}
}
queueDestory(&queue);
printf("\n");
}

//深度优先生成森林 void dfsTree(AMLGraph g,int i,Tree * t,bool isVisited[]){ isVisited[i] = true; bool isFirst = true; Tree p,q = NULL; for (int next = firstAdj(g,i); next != -1; next = nextAdj(g,i,next)){ if (isVisited[next] == false){ p = makeTreeNode(g.adjMuList[next].vexName); if (isFirst){ (*t)->firstChild = p,isFirst = false; } else{ q->nextSibling = p; } q = p; dfsTree(g,next,&q,isVisited); } } } void dfsForest(AMLGraph g,Tree * t){ bool isVisited[MAX_VEX_NUM] = {false}; *t = NULL; Tree p,q; for (int i = 0; i < g.vexNum; i++){ if (isVisited[i] == false){ p = makeTreeNode(g.adjMuList[i].vexName);//每一次循环都是一颗生成树. if (*t == NULL){//第一个是根节点 *t = p; } else{//其余生成树 是 第一颗 生成树的 兄弟 q->nextSibling = p; } q = p;//保存上一个树 dfsTree(g,i,&q,isVisited); } } }

//广度优先生成森林 void bfsForest(AMLGraph g,Tree * t){ bool isVisited[MAX_VEX_NUM] = {false}; Tree treeArray[MAX_VEX_NUM] = {NULL};//记录所有顶点的 树节点坐标. //因为要 找到 遍历的 树节点的 父亲 是谁.(这一句p = treeArray[top];) Tree p,q,r; LinkQueue queue; queueInit(&queue); for (int i = 0; i < g.vexNum; i++){ if (isVisited[i] == false){ p = makeTreeNode(g.adjMuList[i].vexName); if (i == 0){//第一颗生成树.. *t = p; } else{//其他生成树是 第一颗生成树的 孩子兄弟链表的 兄弟 //(*t)->nextSibling = p; 这样写 就只有 一个兄弟节点了.. q->nextSibling = p; } q = p; treeArray[i] = p; isVisited[i] = true; enqueue(&queue,i); while (!queueEmpty(queue)){ int top; dequeue(&queue,&top); bool isFirst = true; for (int next = firstAdj(g,top);next != -1; next = nextAdj(g,top,next)){ if (isVisited[next] == false){ isVisited[next] = true; r = makeTreeNode(g.adjMuList[next].vexName); treeArray[next] = r; if (isFirst){ p = treeArray[top]; p->firstChild = r,isFirst = false; } else{ p->nextSibling = r; } p = r; enqueue(&queue,next); } } } } } queueDestory(&queue); }

//邻接多重表
int _tmain(int argc, _TCHAR* argv[])
{
AMLGraph g;
createGrahp(&g);
printGrahp(g);
dfsTraverse(g);
bfsTraverse(g);
Tree tree;
dfsForest(g,&tree);
printf("\n----------深度优先遍历生成森林(先序遍历)------------------\n");
preOrderTraverse(tree);
treeDestory(&tree);
bfsForest(g,&tree);
printf("\n----------广度优先遍历生成森林(先序遍历)------------------\n");
preOrderTraverse(tree);
treeDestory(&tree);
destoryGraph(&g);
return 0;
}

运行截图:

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息