您的位置:首页 > 数据库 > MySQL

mysql优化总结(二)

2015-04-10 09:53 204 查看
八、实现MySQL定时批量检查表repair和优化表optimize table的shell脚本

九、MySQL性能优化之路---修改配置文件my.cnf:

在Apache, PHP, MySQL的体系架构中,MySQL对于性能的影响最大,也是关键的核心部分。对于Discuz!论坛程序也是如此,MySQL的设置是否合理优化,直接影响到论坛的速度和承载量!同时,MySQL也是优化难度最大的一个部分,不但需要理解一些MySQL专业知识,同时还需要长时间的观察统计并且根据经验进行判断,然后设置合理的参数。 下面我们了解一下MySQL优化的一些基础,MySQL的优化我分为两个部分,一是服务器物理硬件的优化,二是MySQL自身(my.cnf)的优化。

一、服务器硬件对MySQL性能的影响

①磁盘寻道能力(磁盘I/O),以目前高转速SCSI硬盘(7200转/秒)为例,这种硬盘理论上每秒寻道7200次,这是物理特性决定的,没有办法改变。MySQL每秒钟都在进行大量、复杂的查询操作,对磁盘的读写量可想而知。所以,通常认为磁盘I/O是制约MySQL性能的最大因素之一,对于日均访问量在100万PV以上的Discuz!论坛,由于磁盘I/O的制约,MySQL的性能会非常低下!解决这一制约因素可以考虑以下几种解决方案: 使用RAID-0+1磁盘阵列,注意不要尝试使用RAID-5,MySQL在RAID-5磁盘阵列上的效率不会像你期待的那样快。

②CPU 对于MySQL应用,推荐使用S.M.P.架构的多路对称CPU,例如:可以使用两颗Intel Xeon 3.6GHz的CPU,现在我较推荐用4U的服务器来专门做数据库服务器,不仅仅是针对于mysql。

③物理内存对于一台使用MySQL的Database Server来说,服务器内存建议不要小于2GB,推荐使用4GB以上的物理内存,不过内存对于现在的服务器而言可以说是一个可以忽略的问题,工作中遇到了高端服务器基本上内存都超过了16G。

二、MySQL自身因素当解决了上述服务器硬件制约因素后,让我们看看MySQL自身的优化是如何操作的。 对MySQL自身的优化主要是对其配置文件my.cnf中的各项参数进行优化调整。下面我们介绍一些对性能影响较大的参数。 由于my.cnf文件的优化设置是与服务器硬件配置息息相关的, 因而我们指定一个假想的服务器硬件环境:CPU: 2颗Intel Xeon 2.4GHz 内存: 4GB DDR 硬盘: SCSI 73GB(很常见的2U服务器 ) 。

下面,我们根据以上硬件配置结合一份已经优化好的my.cnf进行说明:

[mysqld]

port = 3306

serverid = 1

socket = /tmp/mysql.sock

skip-locking

#避免MySQL的外部锁定,减少出错几率增强稳定性。

skip-name-resolve

#禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间。但需要注意,如果开启该选项,则所有远程主机连接授权都要使用IP地址方式,否则MySQL将无法正常处理连接请求!

back_log = 384

#back_log参数的值指出在MySQL暂时停止响应新请求之前的短时间内多少个请求可以被存在堆栈中。 如果系统在一个短时间内有很多连接,则需要增大该参数的值,该参数值指定到来的TCP/IP连接的侦听队列的大小。不同的操作系统在这个队列大小上有它自己的限制。 试图设定back_log高于你的操作系统的限制将是无效的。默认值为50。对于Linux系统推荐设置为小于512的整数。

key_buffer_size = 256M

#key_buffer_size指定用于索引的缓冲区大小,增加它可得到更好的索引处理性能。对于内存在4GB左右的服务器该参数可设置为256M或384M。注意:该参数值设置的过大反而会是服务器整体效率降低!

max_allowed_packet = 4M

thread_stack = 256K

table_cache = 128K

sort_buffer_size = 6M

#查询排序时所能使用的缓冲区大小。注意:该参数对应的分配内存是每连接独占,如果有100个连接,那么实际分配的总共排序缓冲区大小为100 × 6 = 600MB。所以,对于内存在4GB左右的服务器推荐设置为6-8M。

read_buffer_size = 4M

#读查询操作所能使用的缓冲区大小。和sort_buffer_size一样,该参数对应的分配内存也是每连接独享。

join_buffer_size = 8M

#联合查询操作所能使用的缓冲区大小,和sort_buffer_size一样,该参数对应的分配内存也是每连接独享。

myisam_sort_buffer_size = 64M

table_cache = 512

thread_cache_size = 64

query_cache_size = 64M

#指定MySQL查询缓冲区的大小。可以通过在MySQL控制台观察,如果Qcache_lowmem_prunes的值非常大,则表明经常出现缓冲不够的情况;如果Qcache_hits的值非常大,则表明查询缓冲使用非常频繁,如果该值较小反而会影响效率,那么可以考虑不用查询缓冲;Qcache_free_blocks,如果该值非常大,则表明缓冲区中碎片很多。

tmp_table_size = 256M

max_connections = 768

#指定MySQL允许的最大连接进程数。如果在访问论坛时经常出现Too Many Connections的错误提 示,则需要增大该参数值。

max_connect_errors = 10000000

wait_timeout = 10

#指定一个请求的最大连接时间,对于4GB左右内存的服务器可以设置为5-10。

thread_concurrency = 8

#该参数取值为服务器逻辑CPU数量*2,在本例中,服务器有2颗物理CPU,而每颗物理CPU又支持H.T超线程,所以实际取值为4*2=8

skip-networking

#开启该选项可以彻底关闭MySQL的TCP/IP连接方式,如果WEB服务器是以远程连接的方式访问MySQL数据库服务器则不要开启该选项!否则将无法正常连接!

table_cache=1024

#物理内存越大,设置就越大.默认为2402,调到512-1024最佳

innodb_additional_mem_pool_size=4M

#默认为2M

innodb_flush_log_at_trx_commit=1

#设置为0就是等到innodb_log_buffer_size列队满后再统一储存,默认为1

innodb_log_buffer_size=2M

#默认为1M

innodb_thread_concurrency=8

#你的服务器CPU有几个就设置为几,建议用默认一般为8

key_buffer_size=256M

#默认为218,调到128最佳

tmp_table_size=64M

#默认为16M,调到64-256最挂

read_buffer_size=4M

#默认为64K

read_rnd_buffer_size=16M

#默认为256K

sort_buffer_size=32M

#默认为256K

thread_cache_size=120

#默认为60

query_cache_size=32M

※值得注意的是:

很多情况需要具体情况具体分析

(一)、如果Key_reads太大,则应该把my.cnf中Key_buffer_size变大,保持Key_reads/Key_read_requests至少1/100以上,越小越好。

(二)、如果Qcache_lowmem_prunes很大,就要增加Query_cache_size的值。

十、浅析Mysql Join语法以及性能优化:

(一).Join语法概述

join 用于多表中字段之间的联系,语法如下:

... FROM table1 INNER|LEFT|RIGHT JOIN table2 ON conditiona

table1:左表;table2:右表。

JOIN 按照功能大致分为如下三类:

INNER JOIN(内连接,或等值连接):取得两个表中存在连接匹配关系的记录。

LEFT JOIN(左连接):取得左表(table1)完全记录,即是右表(table2)并无对应匹配记录。

RIGHT JOIN(右连接):与 LEFT JOIN 相反,取得右表(table2)完全记录,即是左表(table1)并无匹配对应记录。

注意:mysql不支持Full join,不过可以通过UNION 关键字来合并 LEFT JOIN 与 RIGHT JOIN来模拟FULL join.

接下来给出一个列子用于解释下面几种分类。如下两个表(A,B)

mysql> select A.id,A.name,B.name from A,B where A.id=B.id;

+----+-----------+-------------+

| id | name | name |

+----+-----------+-------------+

| 1 | Pirate | Rutabaga |

| 2 | Monkey | Pirate |

| 3 | Ninja | Darth Vader |

| 4 | Spaghetti | Ninja |

+----+-----------+-------------+

4 rows in set (0.00 sec)

(二).Inner join

内连接,也叫等值连接,inner join产生同时符合A和B的一组数据。

mysql> select * from A inner join B on A.name = B.name;

+----+--------+----+--------+

| id | name | id | name |

+----+--------+----+--------+

| 1 | Pirate | 2 | Pirate |

| 3 | Ninja | 4 | Ninja |

+----+--------+----+--------+

(三).Left joinmysql> select * from A left join B on A.name = B.name;

#或者:select * from A left outer join B on A.name = B.name;

+----+-----------+------+--------+

| id | name | id | name |

+----+-----------+------+--------+

| 1 | Pirate | 2 | Pirate |

| 2 | Monkey | NULL | NULL |

| 3 | Ninja | 4 | Ninja |

| 4 | Spaghetti | NULL | NULL |

+----+-----------+------+--------+

4 rows in set (0.00 sec)

left join,(或left outer join:在Mysql中两者等价,推荐使用left join.)左连接从左表(A)产生一套完整的记录,与匹配的记录(右表(B)) .如果没有匹配,右侧将包含null。

如果想只从左表(A)中产生一套记录,但不包含右表(B)的记录,可以通过设置where语句来执行,如下

mysql> select * from A left join B on A.name=B.name where A.id is null or B.id is null;

+----+-----------+------+------+

| id | name | id | name |

+----+-----------+------+------+

| 2 | Monkey | NULL | NULL |

| 4 | Spaghetti | NULL | NULL |

+----+-----------+------+------+

2 rows in set (0.00 sec)

同理,还可以模拟inner join. 如下:

mysql> select * from A left join B on A.name=B.name where A.id is not null and B.id is not null;

+----+--------+------+--------+

| id | name | id | name |

+----+--------+------+--------+

| 1 | Pirate | 2 | Pirate |

| 3 | Ninja | 4 | Ninja |

+----+--------+------+--------+

2 rows in set (0.00 sec)

求差集:

根据上面的例子可以求差集,如下:

SELECT * FROM A LEFT JOIN B ON A.name = B.name

WHERE B.id IS NULL

union

SELECT * FROM A right JOIN B ON A.name = B.name

WHERE A.id IS NULL;

# 结果

+------+-----------+------+-------------+

| id | name | id | name |

+------+-----------+------+-------------+

| 2 | Monkey | NULL | NULL |

| 4 | Spaghetti | NULL | NULL |

| NULL | NULL | 1 | Rutabaga |

| NULL | NULL | 3 | Darth Vader |

+------+-----------+------+-------------+

(四).Right join

mysql> select * from A right join B on A.name = B.name;

+------+--------+----+-------------+

| id | name | id | name |

+------+--------+----+-------------+

| NULL | NULL | 1 | Rutabaga |

| 1 | Pirate | 2 | Pirate |

| NULL | NULL | 3 | Darth Vader |

| 3 | Ninja | 4 | Ninja |

+------+--------+----+-------------+

4 rows in set (0.00 sec)

同left join。

(五).Cross join

cross join:交叉连接,得到的结果是两个表的乘积,即笛卡尔积

笛卡尔(Descartes)乘积又叫直积。假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1), (b,2)}。可以扩展到多个集合的情况。类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。

mysql> select * from A cross join B;

+----+-----------+----+-------------+

| id | name | id | name |

+----+-----------+----+-------------+

| 1 | Pirate | 1 | Rutabaga |

| 2 | Monkey | 1 | Rutabaga |

| 3 | Ninja | 1 | Rutabaga |

| 4 | Spaghetti | 1 | Rutabaga |

| 1 | Pirate | 2 | Pirate |

| 2 | Monkey | 2 | Pirate |

| 3 | Ninja | 2 | Pirate |

| 4 | Spaghetti | 2 | Pirate |

| 1 | Pirate | 3 | Darth Vader |

| 2 | Monkey | 3 | Darth Vader |

| 3 | Ninja | 3 | Darth Vader |

| 4 | Spaghetti | 3 | Darth Vader |

| 1 | Pirate | 4 | Ninja |

| 2 | Monkey | 4 | Ninja |

| 3 | Ninja | 4 | Ninja |

| 4 | Spaghetti | 4 | Ninja |

+----+-----------+----+-------------+

16 rows in set (0.00 sec)

#再执行:mysql> select * from A inner join B; 试一试

#在执行mysql> select * from A cross join B on A.name = B.name; 试一试

实际上,在 MySQL 中(仅限于 MySQL) CROSS JOIN 与 INNER JOIN 的表现是一样的,在不指定 ON 条件得到的结果都是笛卡尔积,反之取得两个表完全匹配的结果。 INNER JOIN 与 CROSS JOIN 可以省略 INNER 或 CROSS 关键字,因此下面的 SQL 效果是一样的:

... FROM table1 INNER JOIN table2

... FROM table1 CROSS JOIN table2

... FROM table1 JOIN table2(六).Full join

mysql> select * from A left join B on B.name = A.name

-> union

-> select * from A right join B on B.name = A.name;

+------+-----------+------+-------------+

| id | name | id | name |

+------+-----------+------+-------------+

| 1 | Pirate | 2 | Pirate |

| 2 | Monkey | NULL | NULL |

| 3 | Ninja | 4 | Ninja |

| 4 | Spaghetti | NULL | NULL |

| NULL | NULL | 1 | Rutabaga |

| NULL | NULL | 3 | Darth Vader |

+------+-----------+------+-------------+

6 rows in set (0.00 sec)

全连接产生的所有记录(双方匹配记录)在表A和表B。如果没有匹配,则对面将包含null。

(七).性能优化

1.显示(explicit) inner join VS 隐式(implicit) inner join

如:

select * from

table a inner join table b

on a.id = b.id;VS

select a.*, b.*

from table a, table b

where a.id = b.id;

我在数据库中比较(10w数据)得之,它们用时几乎相同,第一个是显示的inner join,后一个是隐式的inner join。

2.left join/right join VS inner join

尽量用inner join.避免 LEFT JOIN 和 NULL.

在使用left join(或right join)时,应该清楚的知道以下几点:

(1). on与 where的执行顺序

ON 条件(“A LEFT JOIN B ON 条件表达式”中的ON)用来决定如何从 B 表中检索数据行。如果 B 表中没有任何一行数据匹配 ON 的条件,将会额外生成一行所有列为 NULL 的数据,在匹配阶段 WHERE 子句的条件都不会被使用。仅在匹配阶段完成以后,WHERE 子句条件才会被使用。它将从匹配阶段产生的数据中检索过滤。

所以我们要注意:在使用Left (right) join的时候,一定要在先给出尽可能多的匹配满足条件,减少Where的执行。如:

PASS

select * from A

inner join B on B.name = A.name

left join C on C.name = B.name

left join D on D.id = C.id

where C.status>1 and D.status=1;

Great

select * from A

inner join B on B.name = A.name

left join C on C.name = B.name and C.status>1

left join D on D.id = C.id and D.status=1

从上面例子可以看出,尽可能满足ON的条件,而少用Where的条件。从执行性能来看第二个显然更加省时。

(2).注意ON 子句和 WHERE 子句的不同

如作者举了一个列子:

mysql> SELECT * FROM product LEFT JOIN product_details

ON (product.id = product_details.id)

AND product_details.id=2;

+----+--------+------+--------+-------+

| id | amount | id | weight | exist |

+----+--------+------+--------+-------+

| 1 | 100 | NULL | NULL | NULL |

| 2 | 200 | 2 | 22 | 0 |

| 3 | 300 | NULL | NULL | NULL |

| 4 | 400 | NULL | NULL | NULL |

+----+--------+------+--------+-------+

4 rows in set (0.00 sec)

mysql> SELECT * FROM product LEFT JOIN product_details

ON (product.id = product_details.id)

WHERE product_details.id=2;

+----+--------+----+--------+-------+

| id | amount | id | weight | exist |

+----+--------+----+--------+-------+

| 2 | 200 | 2 | 22 | 0 |

+----+--------+----+--------+-------+

1 row in set (0.01 sec)

从上可知,第一条查询使用 ON 条件决定了从 LEFT JOIN的 product_details表中检索符合的所有数据行。第二条查询做了简单的LEFT JOIN,然后使用 WHERE 子句从 LEFT JOIN的数据中过滤掉不符合条件的数据行。

(3).尽量避免子查询,而用join

往往性能这玩意儿,更多时候体现在数据量比较大的时候,此时,我们应该避免复杂的子查询。如下:

PASS

insert into t1(a1) select b1 from t2 where not exists(select 1 from t1 where t1.id = t2.r_id);

Great

insert into t1(a1)

select b1 from t2

left join (select distinct t1.id from t1 ) t1 on t1.id = t2.r_id

where t1.id is null;
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: