您的位置:首页 > 运维架构 > 网站架构

input子系统架构分析

2015-03-18 18:12 344 查看
在Linux内核中,input设备用input_dev结构体描述,使用input子系统实现输入设备驱动的时候,驱动的核心工作是向系统报告按键、触摸屏、键盘、鼠标等输入事件(event,通过input_event结构体描述),不再需要关心文件操作接口,因为input子系统已经完成了文件操作接口。驱动报告的事件经过InputCore和 Eventhandler最终到达用户空间。下面给出一个使用input子系统的例子,通过这个例子来解析input子系统的方方面面

一、input输入子系统框架

输入子系统由输入子系统核心层( Input Core ),驱动层和事件处理层(Event Handler)三部份组成。一个输入事件,如鼠标移动,键盘按键按下等等通过 input driver -> Input core -> Event handler -> userspace 到达用户空间传给应用程序



二、Input driver编写要点

1、分配、注册、注销input设备

struct input_dev *input_allocate_device(void)

        int input_register_device(struct input_dev *dev)

        void input_unregister_device(struct input_dev *dev)

2、设置input设备支持的事件类型、事件码、事件值的范围、input_id等信息

参见usb键盘驱动:usbkbd.c

usb_to_input_id(dev, &input_dev->id);//设置bustype、vendo、product等

        input_dev->evbit[0] = BIT(EV_KEY) | BIT(EV_LED) | BIT(EV_REP);//支持的事件类型

        input_dev->ledbit[0] = BIT(LED_NUML) | BIT(LED_CAPSL) | BIT(LED_SCROLLL) | BIT(LED_COMPOSE) | BIT(LED_KANA);// EV_LED事件支持的事件码

        for (i = 0; i < 255; i++)

                set_bit(usb_kbd_keycode[i], input_dev->keybit); //EV_KEY事件支持的事件码

include/linux/input.h中定义了支持的类型(下面列出的是2.6.22内核的情况)

#define EV_SYN           0x00

        #define EV_KEY           0x01

        #define EV_REL           0x02

        #define EV_ABS           0x03

        #define EV_MSC          0x04

        #define EV_SW            0x05

        #define EV_LED          0x11

        #define EV_SND         0x12

        #define EV_REP         0x14

        #define EV_FF             0x15

        #define EV_PWR        0x16

        #define EV_FF_STATUS        0x17

        #define EV_MAX          0x1f

一个设备可以支持一个或多个事件类型。每个事件类型下面还需要设置具体的触发事件码。比如:EV_KEY事件,需要定义其支持哪些按键事件码。

3、如果需要,设置input设备的打开、关闭、写入数据时的处理方法

参见usb键盘驱动:usbkbd.c

input_dev->open = usb_kbd_open;

        input_dev->close = usb_kbd_close;

        input_dev->event = usb_kbd_event;

4、在发生输入事件时,向子系统报告事件

用于报告EV_KEY、EV_REL、EV_ABS等事件的函数有:

void input_report_key(struct input_dev *dev, unsigned int code, int value)

        void input_report_rel(struct input_dev *dev, unsigned int code, int value)

        void input_report_abs(struct input_dev *dev, unsigned int code, int value)

如果你觉得麻烦,你也可以只记住1个函数(因为上述函数都是通过它实现的)

void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)

三、Event Handler层解析

1、Input输入子系统数据结构关系图



2、input_handler结构体

以evdev.c中的evdev_handler为例:
static struct input_handler evdev_handler = {

                .event = evdev_event, //向系统报告input事件,系统通过read方法读取

                .connect = evdev_connect, //和input_dev匹配后调用connect构建

                .disconnect = evdev_disconnect,

                .fops = &evdev_fops, //event设备文件的操作方法
                .minor = EVDEV_MINOR_BASE, //次设备号基准值
                .name = "evdev",
                .id_table = evdev_ids, //匹配规则
        };

3、input字符设备注册过程

drivers/input/input.c中:

        static int __init input_init(void)

        {

                int err;

                err = class_register(&input_class);

                ……

                err = register_chrdev(INPUT_MAJOR, "input", &input_fops);

                ……

        }

input_fops定义:
static const struct file_operations input_fops = {

                .owner = THIS_MODULE,

             
4000
   .open = input_open_file,
        };
Input_dev和input_handler匹配后调用input_handler的connect。以evdev_handler为例:

static int evdev_connect(struct input_handler *handler, struct input_dev *dev,const struct input_device_id *id)

        {

                struct evdev *evdev; 

                struct class_device *cdev;

                dev_t devt;

                int minor;

                int error;

        for (minor = 0; minor < EVDEV_MINORS && evdev_table[minor]; minor++);

                if (minor == EVDEV_MINORS) {

                        printk(KERN_ERR "evdev: no more free evdev devices\n");

                        return -ENFILE;

                }

        evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);//为每个匹配evdev_handler的设备创建一个evdev。

                if (!evdev)

                        return -ENOMEM;

        INIT_LIST_HEAD(&evdev->client_list);

                init_waitqueue_head(&evdev->wait);

        evdev->exist = 1;

                evdev->minor = minor;

                evdev->handle.dev = dev;

                evdev->handle.name = evdev->name;

                evdev->handle.handler = handler;

                evdev->handle.private = evdev;

                sprintf(evdev->name, "event%d", minor);

        evdev_table[minor] = evdev;//记录evdev的位置,字符设备/dev/input/evnetx访问时根据次设备号及EVDEV_MINOR_BASE最终在evdev_open中找到对应的evdev

                devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor),

                cdev = class_device_create(&input_class, &dev->cdev, devt,dev->cdev.dev, evdev->name);//创建了event字符设备节点

                ……


        }

4、input字符设备的打开过程
static int input_open_file(struct inode *inode, struct file *file)
        {
                struct input_handler *handler = input_table[iminor(inode) >> 5];
                //得到对应的input_handler
                const struct file_operations *old_fops, *new_fops = NULL;
                int err;
                if (!handler || !(new_fops = fops_get(handler->fops)))
                //取出对应input_handler的file_operations
                        return -ENODEV;
                if (!new_fops->open) {
                        fops_put(new_fops);
                        return -ENODEV;
                }
                old_fops = file->f_op;
                file->f_op = new_fops;//重定位打开的设备文件的操作方法
                err = new_fops->open(inode, file);
                if (err) {
                        fops_put(file->f_op);
                        file->f_op = fops_get(old_fops);
                }
                fops_put(old_fops);
                return err;
        }

5、input字符设备的其它操作
由于在open阶段已经把设备文件的操作操作方法重定位了到了具体的input_handler,所以其它接口操作(read、write、ioctl等),由各个input_handler的fops方法决定。如evdev.c中的:evdev_fops。


四.Input子系统探幽

(1)input设备注册分析

Input设备注册的接口为:input_register_device()。代码如下:

int input_register_device(struct input_dev *dev)
{
static atomic_t input_no = ATOMIC_INIT(0);
struct input_handler *handler;
const char *path;
int error;
__set_bit(EV_SYN, dev->evbit);
init_timer(&dev->timer);
if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])

 {
dev->timer.data = (long) dev;
dev->timer.function = input_repeat_key;
dev->rep[REP_DELAY] = 250;
dev->rep[REP_PERIOD] = 33;
}

在 前面的分析中曾分析过。Input_device的evbit表示该设备所支持的事件。在这里将其EV_SYN置位,即所有设备都支持这个事件。如果 dev->rep[REP_DELAY]和dev->rep[REP_PERIOD]没有设值,则将其赋默认值。这主要是处理重复按键的。

if (!dev->getkeycode)
dev->getkeycode = input_default_getkeycode;
if (!dev->setkeycode)
dev->setkeycode = input_default_setkeycode;
snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
"input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
error = device_add(&dev->dev);
if (error)
return error;

path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
printk(KERN_INFO "input: %s as %s\n",
dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
kfree(path);
error = mutex_lock_interruptible(&input_mutex);
if (error) {
device_del(&dev->dev);
return error;
}

如 果input device没有定义getkeycode和setkeycode.则将其赋默认值。还记得在键盘驱动中的分析吗?这两个操作函数就可以用来取键的扫描码 和设置键的扫描码。然后调用device_add()将input_dev中封装的device注册到sysfs。

list_add_tail(&dev->node, &input_dev_list);
list_for_each_entry(handler, &input_handler_list, node)
input_attach_handler(dev, handler);
input_wakeup_procfs_readers();

mutex_unlock(&input_mutex);

return 0;
}

这 里就是重点了,将input device 挂到input_dev_list链表上.然后,对每一个挂在input_handler_list的handler调用 input_attach_handler().在这里的情况有好比设备模型中的device和driver的匹配。所有的input device都挂在input_dev_list链上。所有的handler都挂在input_handler_list上。

看一下这个匹配的详细过程。匹配是在input_attach_handler()中完成的。代码如下:

static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
const struct input_device_id *id;
int error;
if (handler->blacklist && input_match_device(handler->blacklist, dev))
return -ENODEV;
id = input_match_device(handler->id_table, dev);
if (!id)
return -ENODEV;
error = handler->connect(handler, dev, id);
if (error && error != -ENODEV)
printk(KERN_ERR
"input: failed to attach handler %s to device %s, "
"error: %d\n",

handler->name, kobject_name(&dev->dev.kobj), error);
return error;
}

如 果handle的blacklist被赋值。要先匹配blacklist中的数据跟dev->id的数据是否匹配。匹配成功过后再来匹配 handle->id和dev->id中的数据。如果匹配成功,则调用handler->connect()。

来看一下具体的数据匹配过程,这是在input_match_device()中完成的。代码如下:

static const struct input_device_id *input_match_device(const struct input_device_id *id,
struct input_dev *dev)
{
int i;
for (; id->flags || id->driver_info; id++) {
if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
if (id->bustype != dev->id.bustype)
continue;
if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
if (id->vendor != dev->id.vendor)
continue;
if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
if (id->product != dev->id.product)
continue;
if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
if (id->version != dev->id.version)
continue;

MATCH_BIT(evbit, EV_MAX);
MATCH_BIT(,, KEY_MAX);
MATCH_BIT(relbit, REL_MAX);
MATCH_BIT(absbit, ABS_MAX);
MATCH_BIT(mscbit, MSC_MAX);
MATCH_BIT(ledbit, LED_MAX);
MATCH_BIT(sndbit, SND_MAX);
MATCH_BIT(ffbit, FF_MAX);
MATCH_BIT(swbit, SW_MAX);
return id;
}
return NULL;
}

MATCH_BIT宏的定义如下:

#define MATCH_BIT(bit, max)
for (i = 0; i < BITS_TO_LONGS(max); i++)
if ((id->bit[i] & dev->bit[i]) != id->bit[i])
break;
if (i != BITS_TO_LONGS(max))
continue;

由 此看到。在id->flags中定义了要匹配的项。定义INPUT_DEVICE_ID_MATCH_BUS。则是要比较input device和input handler的总线类型。INPUT_DEVICE_ID_MATCH_VENDOR,INPUT_DEVICE_ID_MATCH_PRODUCT,INPUT_DEVICE_ID_MATCH_VERSION 分别要求设备厂商。设备号和设备版本。如果id->flags定义的类型匹配成功。或者是id->flags没有定义,就会进入到 MATCH_BIT的匹配项了。

从MATCH_BIT宏的定义可以看出。只有当iput device和input handler的id成员在evbit, keybit,… swbit项相同才会匹配成功。而且匹配的顺序是从evbit, keybit到swbit.只要有一项不同,就会循环到id中的下一项进行比较。简而言之,注册input device的过程就是为input device设置默认值,并将其挂以input_dev_list.与挂载在input_handler_list中的handler相匹配。如果匹配成功,就会调用handler的connect函数.
(2)handler注册分析

Handler注册的接口如下所示:

int input_register_handler(struct input_handler *handler)
{
struct input_dev *dev;
int retval;
retval = mutex_lock_interruptible(&input_mutex);
if (retval)
return retval;
INIT_LIST_HEAD(&handler->h_list);
if (handler->fops != NULL) {
if (input_table[handler->minor >> 5]) {
retval = -EBUSY;
goto out;
}
input_table[handler->minor >> 5] = handler;
}
list_add_tail(&handler->node, &input_handler_list);
list_for_each_entry(dev, &input_dev_list, node)
input_attach_handler(dev, handler);
input_wakeup_procfs_readers();
out:
mutex_unlock(&input_mutex);
return retval;
}

handler->minor表示对应input设备节点的次设备号.以handler->minor右移五位做为索引值插入到input_table[ ]中..之后再来分析input_talbe[ ]的作用。

然后将handler挂到input_handler_list中.然后将其与挂在input_dev_list中的input device匹配.这个过程和input device的注册有相似的地方.都是注册到各自的链表,然后与另外一条链表的对象相匹配.

 

(3)handle的注册

int input_register_handle(struct input_handle *handle)
{

struct input_handler *handler = handle->handler;
struct input_dev *dev = handle->dev;
int error;
/*
* We take dev->mutex here to prevent race with
* input_release_device().
*/
error = mutex_lock_interruptible(&dev->mutex);
if (error)
return error;
list_add_tail_rcu(&handle->d_node, &dev->h_list);
mutex_unlock(&dev->mutex);
synchronize_rcu();

list_add_tail(&handle->h_node, &handler->h_list);
if (handler->start)
handler->start(handle);
return 0;
}

在这个函数里所做的处理其实很简单.将handle挂到所对应input device的h_list链表上.还将handle挂到对应的handler的hlist链表上.如果handler定义了start函数,将调用之。

到这里,我们已经看到了input device, handler和handle是怎么关联起来的了。

(4)event事件的处理

我们在开篇的时候曾以linux kernel文档中自带的代码作分析.提出了几个事件上报的API.这些API其实都是input_event()的封装,代码如下:

void input_event(struct input_dev *dev,
unsigned int type, unsigned int code, int value)
{
unsigned long flags;
//判断设备是否支持这类事件
if (is_event_supported(type, dev->evbit, EV_MAX)) {
spin_lock_irqsave(&dev->event_lock, flags);
//利用键盘输入来调整随机数产生器
add_input_randomness(type, code, value);
input_handle_event(dev, type, code, value);
spin_unlock_irqrestore(&dev->event_lock, flags);
}
}

先判断设备产生的这个事件是否合法.如果合法,流程转入到input_handle_event()中,代码如下:

static void input_handle_event(struct input_dev *dev,
unsigned int type, unsigned int code, int value)
{
int disposition = INPUT_IGNORE_EVENT;
switch (type) {
case EV_SYN:
switch (code) {
case SYN_CONFIG:
disposition = INPUT_PASS_TO_ALL;
break;
case SYN_REPORT:
if (!dev->sync) {
dev->sync = 1;
disposition = INPUT_PASS_TO_HANDLERS;
}
break;
}
break;
case EV_KEY:
//判断按键值是否被支持
if (is_event_supported(code, dev->keybit, KEY_MAX) &&
!!test_bit(code, dev->key) != value) {

if (value != 2) {
__change_bit(code, dev->key);
if (value)
input_start_autorepeat(dev, code);
}
disposition = INPUT_PASS_TO_HANDLERS;
}
break;
case EV_SW:
if (is_event_supported(code, dev->swbit, SW_MAX) &&
!!test_bit(code, dev->sw) != value) {

__change_bit(code, dev->sw);
disposition = INPUT_PASS_TO_HANDLERS;
}
break;

case EV_ABS:

if (is_event_supported(code, dev->absbit, ABS_MAX)) {
value = input_defuzz_abs_event(value,
dev->abs[code], dev->absfuzz[code]);
if (dev->abs[code] != value) {
dev->abs[code] = value;
disposition = INPUT_PASS_TO_HANDLERS;
}
}
break;
case EV_REL:
if (is_event_supported(code, dev->relbit, REL_MAX) && value)
disposition = INPUT_PASS_TO_HANDLERS;
break;
case EV_MSC:
if (is_event_supported(code, dev->mscbit, MSC_MAX))
disposition = INPUT_PASS_TO_ALL;

break;
case EV_LED:
if (is_event_supported(code, dev->ledbit, LED_MAX) &&
!!test_bit(code, dev->led) != value) {
__change_bit(code, dev->led);
disposition = INPUT_PASS_TO_ALL;
}
break;
case EV_SND:
if (is_event_supported(code, dev->sndbit, SND_MAX)) {
if (!!test_bit(code, dev->snd) != !!value)
__change_bit(code, dev->snd);
disposition = INPUT_PASS_TO_ALL;
}
break;
case EV_REP:
if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
dev->rep[code] = value;
disposition = INPUT_PASS_TO_ALL;
}
break;
case EV_FF:
if (value >= 0)
disposition = INPUT_PASS_TO_ALL;
break;
case EV_PWR:
disposition = INPUT_PASS_TO_ALL;
break;
}
if (type != EV_SYN)
dev->sync = 0;
if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
dev->event(dev, type, code, value);

if (disposition & INPUT_PASS_TO_HANDLERS)
input_pass_event (dev, type, code, value);
}

在 这里,我们忽略掉具体事件的处理.到最后,如果该事件需要input device来完成的,就会将disposition设置成INPUT_PASS_TO_DEVICE.如果需要handler来完成的,就将 dispostion设为INPUT_PASS_TO_HANDLERS.如果需要两者都参与,将disposition设置为 INPUT_PASS_TO_ALL。

需要输入设备参与的,回调设备的event函数.如果需要handler参与的.调用input_pass_event().代码如下:

static void input_pass_event(struct input_dev *dev,
unsigned int type, unsigned int code, int value)
{
struct input_handle *handle;
rcu_read_lock();
handle = rcu_dereference(dev->grab);
if (handle)
handle->handler->event(handle, type, code, value);
else
list_for_each_entry_rcu(handle, &dev->h_list, d_node)
if (handle->open)
handle->handler->event(handle,type, code, value);
rcu_read_unlock();
}

如果input device被强制指定了handler,则调用该handler的event函数。结合handle注册的分析,我们知道会将handle挂到input device的h_list链表上。如 果没有为input device强制指定handler.就会遍历input device->h_list上的handle成员.如果该handle被打开,则调用与输入设备对应的handler的event()函数.注意,只有在handle被打开的情况下才会接收到事件。

另外,输入设备的handler强制设置一般是用带EVIOCGRAB标志的ioctl来完成的.如下是发图的方示总结evnet的处理过程。我们已经分析了input device,handler和handle的注册过程以及事件的上报和处理.下面以evdev为实例做分析.来贯穿理解一下整个过程.

五.evdev概述

Evdev对应的设备节点一般位于/dev/input/event0 ~ /dev/input/event4.理论上可以对应32个设备节点.分别代表被handler匹配的32个input device。可以用cat /dev/input/event0.然后移动鼠标或者键盘按键就会有数据输出(两者之间只能选一.因为一个设备文件只能关能一个输入设备).还可以往这个文件里写数据,使其产生特定的事件.这个过程我们之后再详细分析。为了分析这一过程,必须从input子系统的初始化说起。

(1)       input子系统的初始化

Input子系统的初始化函数为input_init().代码如下:

static int __init input_init(void)
{
int err;
err = class_register(&input_class);
if (err) {
printk(KERN_ERR "input: unable to register input_dev class\n");
return err;
}
err = input_proc_init();
if (err)
goto fail1;
err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
if (err) {
printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
goto fail2;
}
return 0;

fail2: input_proc_exit();
fail1: class_unregister(&input_class);
return err;
}

在这个初始化函数里,先注册了一个名为”input”的类.所有input device都属于这个类.在sysfs中表现就是.所有input device所代表的目录都位于/dev/class/input下面,然后调用input_proc_init()在/proc下面建立相关的交互文件,再后调用register_chrdev()注册了主设备号为INPUT_MAJOR(13).次设备号为0~255的字符设备.它的操作指针为input_fops.

在这里,我们看到.所有主设备号13的字符设备的操作最终都会转入到input_fops中.在前面分析的/dev/input/event0~/dev/input/event4的主设备号为13.操作也不例外的落在了input_fops中。Input_fops定义如下:

static const struct file_operations input_fops = {
.owner = THIS_MODULE,
.open = input_open_file,
};

打开文件所对应的操作函数为input_open_file.代码如下示:

static int input_open_file(struct inode *inode, struct file *file)
{
struct input_handler *handler = input_table[iminor(inode) >> 5];
const struct file_operations *old_fops, *new_fops = NULL;
int err;
if (!handler || !(new_fops = fops_get(handler->fops)))
return -ENODEV;

iminor(inode) 为打开文件所对应的次设备号。input_table是一个struct input_handler全局数组,在这里它先设备结点的次设备号右移5位做为索引值到input_table中取对应项。

从这里我们也可以看到.一 个handle代表1<<5个设备节点(因为在input_table中取值是以次备号右移5位为索引的.即低5位相同的次备号对应的是同一个索引)。在这里,终于看到了input_talbe大显身手的地方了,input_talbe[ ]中取值和input_talbe[ ]的赋值,这两个过程是相对应的.在input_table中找到对应的handler之后,就会检验这个handle是否存,是否带有fops文件操作集.如果没有.则返回一个设备不存在的错误.

if (!new_fops->open) {
fops_put(new_fops);
return -ENODEV;
}
old_fops = file->f_op;
file->f_op = new_fops;
err = new_fops->open(inode, file);
if (err) {
fops_put(file->f_op);
file->f_op = fops_get(old_fops);
}
fops_put(old_fops);
return err;
}

然后将handler中的fops替换掉当前的fops.如果新的fops中有open()函数,则调用它。

(2)evdev的初始化

Evdev的模块初始化函数为evdev_init().代码如下:

static int __init evdev_init(void)
{
return input_register_handler(&evdev_handler);
}

它调用了input_register_handler注册了一个handler,注意在这里evdev_handler中定义的minor为EVDEV_MINOR_BASE(64)。也就是说evdev_handler所表示的设备文件范围为(13,64)到(13,64+32)。

从之前的分析我们知道.匹配成功的关键在于handler中的blacklist和id_talbe. Evdev_handler的id_table定义如下:

static const struct input_device_id evdev_ids[] = {
{ .driver_info = 1 }, 
{ }, 
};

它没有定义flags.也没有定义匹配属性值.这个handler是匹配所有input device的.从前面的分析我们知道.匹配成功之后会调用handler->connect函数。在Evdev_handler中,该成员函数如下所示:

static int evdev_connect(struct input_handler *handler, struct input_dev *dev,
const struct input_device_id *id)
{
struct evdev *evdev;
int minor;
int error;
for (minor = 0; minor < EVDEV_MINORS; minor++)
if (!evdev_table[minor])
break;
if (minor == EVDEV_MINORS) {
printk(KERN_ERR "evdev: no more free evdev devices\n");
return -ENFILE;
}

EVDEV_MINORS定义为32.表示evdev_handler所表示的32个设备文件.evdev_talbe是一个struct evdev类型的数组.struct evdev是模块使用的封装结构.在接下来的代码中我们可以看到这个结构的使用。这一段代码的在evdev_talbe找到为空的那一项.minor就是数组中第一项为空的序号。

evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);
if (!evdev)
return -ENOMEM;
INIT_LIST_HEAD(&evdev->client_list);
spin_lock_init(&evdev->client_lock);

mutex_init(&evdev->mutex);
init_waitqueue_head(&evdev->wait);
snprintf(evdev->name, sizeof(evdev->name), "event%d", minor);
evdev->exist = 1;
evdev->minor = minor;
evdev->handle.dev = input_get_device(dev);
evdev->handle.name = evdev->name;
evdev->handle.handler = handler;
evdev->handle.private = evdev;

接 下来,分配了一个evdev结构,并对这个结构进行初始化.在这里我们可以看到,这个结构封装了一个handle结构,这结构与我们之前所讨论的 handler是不相同的.注意有一个字母的差别哦.我们可以把handle看成是handler和input device的信息集合体.在这个结构里集合了匹配成功的handler和input device。

strlcpy(evdev->dev.bus_id, evdev->name, sizeof(evdev->dev.bus_id));
evdev->dev.devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor);
evdev->dev.class = &input_class;
evdev->dev.parent = &dev->dev;
evdev->dev.release = evdev_free;
device_initialize(&evdev->dev);

在这段代码里主要完成evdev封装的device的初始化.注意在这里,使它所属的类指向input_class.这样在/sysfs中创建的设备目录就会在/sys/class/input/下面显示。

error = input_register_handle(&evdev->handle);
if (error)
goto err_free_evdev;
error = evdev_install_chrdev(evdev);
if (error)
goto err_unregister_handle;
error = device_add(&evdev->dev);
if (error)
goto err_cleanup_evdev;
return 0;
err_cleanup_evdev:
evdev_cleanup(evdev);
err_unregister_handle:
input_unregister_handle(&evdev->handle);
err_free_evdev:
put_device(&evdev->dev);
return error;
}

注册handle,如果是成功的,那么调用evdev_install_chrdev将evdev_table的minor项指向evdev. 然后将evdev->device注册到sysfs.如果失败,将进行相关的错误处理。万事俱备了,但是要接收事件,还是要打开相应的handle,这个打开过程是在文件的open()中完成的。

(3)evdev设备结点的open()操作

我们知道.对主设备号为INPUT_MAJOR的设备节点进行操作,会将操作集转换成handler的操作集,在evdev中,这个操作集就是evdev_fops对应的open函数如下示:

static int evdev_open(struct inode *inode, struct file *file)
{
struct evdev *evdev;
struct evdev_client *client;
int i = iminor(inode) - EVDEV_MINOR_BASE;
int error;
if (i >= EVDEV_MINORS)
return -ENODEV;
error = mutex_lock_interruptible(&evdev_table_mutex);
if (error)
return error;
evdev = evdev_table[i];
if (evdev)
get_device(&evdev->dev);
mutex_unlock(&evdev_table_mutex);
if (!evdev)
return -ENODEV;
client = kzalloc(sizeof(struct evdev_client), GFP_KERNEL);
if (!client) {
error = -ENOMEM;
goto err_put_evdev;
}
spin_lock_init(&client->buffer_lock);
client->evdev = evdev;
evdev_attach_client(evdev, client);
error = evdev_open_device(evdev);
if (error)
goto err_free_client;
file->private_data = client;
return 0;
err_free_client:
evdev_detach_client(evdev, client);
kfree(client);
err_put_evdev:
put_device(&evdev->dev);
return error;
}

iminor(inode) - EVDEV_MINOR_BASE就得到了在evdev_table[ ]中的序号.然后将数组中对应的evdev取出.递增devdev中device的引用计数。

分配并初始化一个client.并将它和evdev关联起来: client->evdev指向它所表示的evdev. 将client挂到evdev->client_list上. 将client赋为file的私有区。对应handle的打开是在此evdev_open_device()中完成的,代码如下:

static int evdev_open_device(struct evdev *evdev)
{
int retval;
retval = mutex_lock_interruptible(&evdev->mutex);
if (retval)
return retval;
if (!evdev->exist)
retval = -ENODEV;
else if (!evdev->open++) {
retval = input_open_device(&evdev->handle);
if (retval)
evdev->open--;
}
mutex_unlock(&evdev->mutex);
return retval;
}

如果evdev是第一次打开,就会调用input_open_device()打开evdev对应的handle,跟踪一下这个函数:

int input_open_device(struct input_handle *handle)
{
struct input_dev *dev = handle->dev;
int retval;

retval = mutex_lock_interruptible(&dev->mutex);
if (retval)
return retval;
if (dev->going_away) {
retval = -ENODEV;
goto out;
}
handle->open++;
if (!dev->users++ && dev->open)
retval = dev->open(dev);
if (retval) {
dev->users--;if (!--handle->open) {
synchronize_rcu();
}
}
out:
mutex_unlock(&dev->mutex);
return retval;
}

在这个函数中,我们看到递增handle的打开计数,如果是第一次打开.则调用input device的open()函数.

(4)evdev的事件处理

经过上面的分析.每当input device上报一个事件时,会将其交给和它匹配的handler的event函数处理.在evdev中.这个event函数对应的代码为:

static void evdev_event(struct input_handle *handle,
unsigned int type, unsigned int code, int value)
{
struct evdev *evdev = handle->private;
struct evdev_client *client;
struct input_event event;
do_gettimeofday(&event.time);
event.type = type;
event.code = code;
event.value = value;
rcu_read_lock();
client = rcu_dereference(evdev->grab);
if (client)
evdev_pass_event(client, &event);
else
list_for_each_entry_rcu(client, &evdev->client_list, node)
evdev_pass_event(client, &event);
rcu_read_unlock();
wake_up_interruptible(&evdev->wait);
}

首先构造一个struct input_event结构.并设备它的type.code,value为处理事件的相关属性.如果该设备被强制设置了handle.则调用如之对应的client。

我们在open的时候分析到.会初始化clinet并将其链入到evdev->client_list. 这样,就可以通过evdev->client_list找到这个client了。对于找到的第一个client都会调用evdev_pass_event( ),代码如下:

static void evdev_pass_event(struct evdev_client *client,
struct input_event *event)
{
spin_lock(&client->buffer_lock);
client->buffer[client->head++] = *event;
client->head &= EVDEV_BUFFER_SIZE - 1;
spin_unlock(&client->buffer_lock);
kill_fasync(&client->fasync, SIGIO, POLL_IN);
}

这里的操作很简单.就是将event保存到client->buffer中.而client->head就是当前的数据位置.注意这里是一个环形缓存区.写数据是从client->head写.而读数据则是从client->tail中读。

(5)设备节点的read处理

对于evdev设备节点的read操作都会由evdev_read()完成.它的代码如下:

static ssize_t evdev_read(struct file *file, char __user *buffer,
size_t count, loff_t *ppos)
{
struct evdev_client *client = file->private_data;
struct evdev *evdev = client->evdev;
struct input_event event;
int retval;
if (count < evdev_event_size())
return -EINVAL;
if (client->head == client->tail && evdev->exist &&
(file->f_flags & O_NONBLOCK))
return -EAGAIN;
retval = wait_event_interruptible(evdev->wait,
client->head != client->tail || !evdev->exist);
if (retval)
return retval;
if (!evdev->exist)
return -ENODEV;
while (retval + evdev_event_size() <= count &&
evdev_fetch_next_event(client, &event)) {
if (evdev_event_to_user(buffer + retval, &event))
return -EFAULT;
retval += evdev_event_size();
}
return retval;
}

首先,它判断缓存区大小是否足够.在读取数据的情况下,可能当前缓存区内没有数据可读.在这里先睡眠等待缓存区中有数据。如果在睡眠的时候,条件满足,是不会进行睡眠状态而直接返回的。然后根据read()提够的缓存区大小.将client中的数据写入到用户空间的缓存区中。

(6)设备节点的写操作

同样.对设备节点的写操作是由evdev_write()完成的.代码如下:

static ssize_t evdev_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
struct evdev_client *client = file->private_data;
struct evdev *evdev = client->evdev;
struct input_event event;
int retval;
retval = mutex_lock_interruptible(&evdev->mutex);
if (retval)
return retval;
if (!evdev->exist) {
retval = -ENODEV;
goto out;
}
while (retval < count) {
if (evdev_event_from_user(buffer + retval, &event)) {
retval = -EFAULT;
bsp; goto out;
}
input_inject_event(&evdev->handle,
event.type, event.code, event.value);
retval += evdev_event_size();
}
out:
mutex_unlock(&evdev->mutex);
return retval;
}

首先取得操作设备文件所对应的evdev,实际上,这里写入设备文件的是一个event结构的数组.我们在之前分析过,这个结构里包含了事件的type.code和event,将写入设备的event数组取出,然后对每一项调用event_inject_event()。

这个函数的操作和input_event()差不多,就是将第一个参数handle转换为输入设备结构,然后这个设备再产生一个事件。代码如下:

void input_inject_event(struct input_handle *handle,
unsigned int type, unsigned int code, int value)
{
struct input_dev *dev = handle->dev;
struct input_handle *grab;
unsigned long flags;
if (is_event_supported(type, dev->evbit, EV_MAX)) {
spin_lock_irqsave(&dev->event_lock, flags);
rcu_read_lock();
grab = rcu_dereference(dev->grab);
if (!grab || grab == handle)
input_handle_event(dev, type, code, value);
rcu_read_unlock();
spin_unlock_irqrestore(&dev->event_lock, flags);
}
}

我们在这里也可以跟input_event()对比一下,这里设备可以产生任意事件,而不需要和设备所支持的事件类型相匹配,由此可见,对于写操作而言.就是让与设备文件相关的输入设备产生一个特定的事件。

六.小结

在 这一节点,分析了整个input子系统的架构,各个环节的流程。最后还以evdev为例将各个流程贯穿在一起,以加深对input子系统的理解。

由此也可以看出:linux设备驱动采用了分层的模式,从最下层的设备模型到设备,驱动和总线,再到input子系统最后到input device。这样的分层结构使得最上层的驱动不必关心下层是怎么实现的,而下层驱动又为多种型号同样功能的驱动提供了一个统一的接口。

 
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: