您的位置:首页 > 其它

GraphX之Pregel(BSP模型-消息传递机制)学习

2014-12-17 10:24 417 查看
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements.  See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License.  You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0 *
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.graphx

import scala.reflect.ClassTag
import org.apache.spark.Logging

/**
* Implements a Pregel-like bulk-synchronous message-passing API.
*
* Unlike the original Pregel API, the GraphX Pregel API factors the sendMessage computation over
* edges, enables the message sending computation to read both vertex attributes, and constrains
* messages to the graph structure.  These changes allow for substantially more efficient
* distributed execution while also exposing greater flexibility for graph-based computation.
*
* @example We can use the Pregel abstraction to implement PageRank:
* {{{
* val pagerankGraph: Graph[Double, Double] = graph
*   // Associate the degree with each vertex
*   .outerJoinVertices(graph.outDegrees) {
*     (vid, vdata, deg) => deg.getOrElse(0)
*   }
*   // Set the weight on the edges based on the degree
*   .mapTriplets(e => 1.0 / e.srcAttr)
*   // Set the vertex attributes to the initial pagerank values
*   .mapVertices((id, attr) => 1.0)
*
* def vertexProgram(id: VertexId, attr: Double, msgSum: Double): Double =
*   resetProb + (1.0 - resetProb) * msgSum
* def sendMessage(id: VertexId, edge: EdgeTriplet[Double, Double]): Iterator[(VertexId, Double)] =
*   Iterator((edge.dstId, edge.srcAttr * edge.attr))
* def messageCombiner(a: Double, b: Double): Double = a + b
* val initialMessage = 0.0
* // Execute Pregel for a fixed number of iterations.
* Pregel(pagerankGraph, initialMessage, numIter)(
*   vertexProgram, sendMessage, messageCombiner)
* }}}
*
*/
object Pregel extends Logging {

/**
* Execute a Pregel-like iterative vertex-parallel abstraction.  The
* user-defined vertex-program `vprog` is executed in parallel on
* each vertex receiving any inbound messages and computing a new
* value for the vertex.  The `sendMsg` function is then invoked on
* all out-edges and is used to compute an optional message to the
* destination vertex. The `mergeMsg` function is a commutative
* associative function used to combine messages destined to the
* same vertex.
*
* On the first iteration all vertices receive the `initialMsg` and
* on subsequent iterations if a vertex does not receive a message
* then the vertex-program is not invoked.
*
* This function iterates until there are no remaining messages, or
* for `maxIterations` iterations.
*
* @tparam VD the vertex data type
* @tparam ED the edge data type
* @tparam A the Pregel message type
*
* @param graph the input graph.
*
* @param initialMsg the message each vertex will receive at the on
* the first iteration
*
* @param maxIterations the maximum number of iterations to run for
*
* @param activeDirection the direction of edges incident to a vertex that received a message in
* the previous round on which to run `sendMsg`. For example, if this is `EdgeDirection.Out`, only
* out-edges of vertices that received a message in the previous round will run. The default is
* `EdgeDirection.Either`, which will run `sendMsg` on edges where either side received a message
* in the previous round. If this is `EdgeDirection.Both`, `sendMsg` will only run on edges where
* *both* vertices received a message.
*
* @param vprog the user-defined vertex program which runs on each
* vertex and receives the inbound message and computes a new vertex
* value.  On the first iteration the vertex program is invoked on
* all vertices and is passed the default message.  On subsequent
* iterations the vertex program is only invoked on those vertices
* that receive messages.
*
* @param sendMsg a user supplied function that is applied to out
* edges of vertices that received messages in the current
* iteration
*
* @param mergeMsg a user supplied function that takes two incoming
* messages of type A and merges them into a single message of type
* A.  ''This function must be commutative and associative and
* ideally the size of A should not increase.''
*
* @return the resulting graph at the end of the computation
*
*/
def apply[VD: ClassTag, ED: ClassTag, A: ClassTag]
(graph: Graph[VD, ED],
initialMsg: A,
maxIterations: Int = Int.MaxValue,
activeDirection: EdgeDirection = EdgeDirection.Either)
(vprog: (VertexId, VD, A) => VD,
sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
mergeMsg: (A, A) => A)
: Graph[VD, ED] =
{
var g = graph.mapVertices((vid, vdata) => vprog(vid, vdata, initialMsg)).cache()
// compute the messages
var messages = g.mapReduceTriplets(sendMsg, mergeMsg)
var activeMessages = messages.count()
// Loop
var prevG: Graph[VD, ED] = null
var i = 0
while (activeMessages > 0 && i < maxIterations) {
// Receive the messages. Vertices that didn't get any messages do not appear in newVerts.
val newVerts = g.vertices.innerJoin(messages)(vprog).cache()
// Update the graph with the new vertices.
prevG = g
g = g.outerJoinVertices(newVerts) { (vid, old, newOpt) => newOpt.getOrElse(old) }
g.cache()

val oldMessages = messages
// Send new messages. Vertices that didn't get any messages don't appear in newVerts, so don't
// get to send messages. We must cache messages so it can be materialized on the next line,
// allowing us to uncache the previous iteration.
messages = g.mapReduceTriplets(sendMsg, mergeMsg, Some((newVerts, activeDirection))).cache()
// The call to count() materializes `messages`, `newVerts`, and the vertices of `g`. This
// hides oldMessages (depended on by newVerts), newVerts (depended on by messages), and the
// vertices of prevG (depended on by newVerts, oldMessages, and the vertices of g).
activeMessages = messages.count()

logInfo("Pregel finished iteration " + i)

// Unpersist the RDDs hidden by newly-materialized RDDs
oldMessages.unpersist(blocking=false)
newVerts.unpersist(blocking=false)
prevG.unpersistVertices(blocking=false)
prevG.edges.unpersist(blocking=false)
// count the iteration
i += 1
}

g
} // end of apply

} // end of class Pregel
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: