您的位置:首页 > 编程语言

最短路径Floyd详解-源代码

2014-12-05 23:38 218 查看
//算法6.11 弗洛伊德算法

#include <iostream>
using namespace std;

#define MaxInt 32767                    	//表示极大值,即∞
#define MVNum 100                       	//最大顶点数

typedef char VerTexType;              		//假设顶点的数据类型为字符型
typedef int ArcType;                  		//假设边的权值类型为整型

int Path[MVNum][MVNum];						//最短路径上顶点vj的前一顶点的序号
int D[MVNum][MVNum];						//记录顶点vi和vj之间的最短路径长度

//------------图的邻接矩阵---------------
typedef struct{
VerTexType vexs[MVNum];            		//顶点表
ArcType arcs[MVNum][MVNum];      		//邻接矩阵
int vexnum,arcnum;                		//图的当前点数和边数
}AMGraph;

int LocateVex(AMGraph G , VerTexType v){
//确定点v在G中的位置
for(int i = 0; i < G.vexnum; ++i)
if(G.vexs[i] == v)
return i;
return -1;
}//LocateVex

void CreateUDN(AMGraph &G){
//采用邻接矩阵表示法,创建有向网G
int i , j , k;
cout <<"请输入总顶点数,总边数,以空格隔开:";
cin >> G.vexnum >> G.arcnum;							//输入总顶点数,总边数
cout << endl;

cout << "输入点的名称,如a" << endl;

for(i = 0; i < G.vexnum; ++i){
cout << "请输入第" << (i+1) << "个点的名称:";
cin >> G.vexs[i];                        			//依次输入点的信息
}
cout << endl;
for(i = 0; i < G.vexnum; ++i){                			//初始化邻接矩阵,边的权值均置为极大值MaxInt
for(j = 0; j < G.vexnum; ++j){
if(j != i)
G.arcs[i][j] = MaxInt;
else
G.arcs[i][j] = 0;
}//for
}//for

cout << "输入边依附的顶点及权值,如a b 3" << endl;
for(k = 0; k < G.arcnum;++k){						//构造邻接矩阵
VerTexType v1 , v2;
ArcType w;
cout << "请输入第" << (k + 1) << "条边依附的顶点及权值:";
cin >> v1 >> v2 >> w;                           //输入一条边依附的顶点及权值
i = LocateVex(G, v1);  j = LocateVex(G, v2);	//确定v1和v2在G中的位置,即顶点数组的下标
G.arcs[i][j] = w;								//边<v1, v2>的权值置为w
}//for
}//CreateUDN

void ShortestPath_Floyed(AMGraph G){
//用Floyd算法求有向网G中各对顶点i和j之间的最短路径
int i , j , k ;
for (i = 0; i < G.vexnum; ++i)          		//各对结点之间初始已知路径及距离
for(j = 0; j < G.vexnum; ++j){
D[i][j] = G.arcs[i][j];
if(D[i][j] < MaxInt && i != j)  Path[i][j]=i;  	//如果i和j之间有弧,则将j的前驱置为i
else Path [i][j] = -1;              		//如果i和j之间无弧,则将j的前驱置为-1
}//for
for(k = 0; k < G.vexnum; ++k)
for(i = 0; i < G.vexnum; ++i)
for(j = 0; j < G.vexnum; ++j)
if(D[i][k] + D[k][j] < D[i][j]){   		//从i经k到j的一条路径更短
D[i][j] = D[i][k]+D[k][j];    		//更新D[i][j]
Path[i][j] = Path[k][j];       			//更改j的前驱为k
}//if
}//ShortestPath_Floyed

void DisplayPath(AMGraph G , int begin ,int temp ){
//显示最短路径
if(Path[begin][temp] != -1){
DisplayPath(G , begin ,Path[begin][temp]);
cout << G.vexs[Path[begin][temp]] << "-->";
}
}//DisplayPath

void main(){
cout << "************算法6.11 弗洛伊德算法**************" << endl << endl;
AMGraph G;
char start , destination;
int num_start , num_destination;

CreateUDN(G);

cout <<endl;
cout << "有向网G创建完成!" << endl;
ShortestPath_Floyed(G);

cout << "请依次输入路径的起点与终点的名称:";
cin >> start >> destination;
num_start = LocateVex(G , start);
num_destination = LocateVex(G , destination);

DisplayPath(G , num_start , num_destination);
cout << G.vexs[num_destination] << endl;
cout << "最短路径的长度为:" << D[num_start][num_destination] << endl;
cout <<endl;
}//main
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  算法 源代码