您的位置:首页 > 运维架构 > 网站架构

新版linux系统设备架构中关于电源管理方式的变更

2014-10-31 15:05 513 查看
新版linux系统设备架构中关于电源管理方式的变更

based on linux-2.6.32

 

一、设备模型各数据结构中电源管理的部分

  linux的设备模型通过诸多结构体来联合描述,如struct device,struct device_type,struct class,

struct device_driver,struct bus_type等。

  

  @kernel/include/linux/devices.h中有这几中结构体的定义,这里只列出和PM有关的项,其余查看源码:

  

  struct device{

   ...

   struct dev_pm_info power; 

   ...

  }

  

  struct device_type {

   ...

   int (*uevent)(struct device *dev, struct kobj_uevent_env *env);

   char *(*devnode)(struct device *dev, mode_t *mode);

   void (*release)(struct device *dev);

  

   const struct dev_pm_ops *pm;

  };

  

  struct class {

   ...

   void (*class_release)(struct class *class);

   void (*dev_release)(struct device *dev);

  

   int (*suspend)(struct device *dev, pm_message_t state);

   int (*resume)(struct device *dev);

  

   const struct dev_pm_ops *pm;

   ...

  };

 

  struct device_driver {

   ...

   int (*probe) (struct device *dev);

   int (*remove) (struct device *dev);

   void (*shutdown) (struct device *dev);

   int (*suspend) (struct device *dev, pm_message_t state);

   int (*resume) (struct device *dev);

  

   const struct dev_pm_ops *pm;

   ...

  };

  

  struct bus_type {

   ...

   int (*match)(struct device *dev, struct device_driver *drv);

   int (*uevent)(struct device *dev, struct kobj_uevent_env *env);

   int (*probe)(struct device *dev);

   int (*remove)(struct device *dev);

   void (*shutdown)(struct device *dev);

  

   int (*suspend)(struct device *dev, pm_message_t state);

   int (*resume)(struct device *dev);

   const struct dev_pm_ops *pm;

   ...

  };

  

  以上可以看出和电源管理相关的两个结构体是struct dev_pm_info和struct dev_pm_ops,他们定义于文件

  @kernel/include/linux/pm.h

  

  struct dev_pm_info {

   pm_message_t  power_state;

   unsigned int  can_wakeup:1;

   unsigned int  should_wakeup:1;

   enum dpm_state  status;  /* Owned by the PM core - 表示该设备当前的PM状态*/

  #ifdef CONFIG_PM_SLEEP

   struct list_head entry;  /* 链接到dpm_list全局链表中的连接体 */

  #endif

  #ifdef CONFIG_PM_RUNTIME   // undef

   struct timer_list suspend_timer;

   unsigned long  timer_expires;

   struct work_struct work;

   wait_queue_head_t wait_queue;

   spinlock_t  lock;

   atomic_t  usage_count;

   atomic_t  child_count;

   unsigned int  disable_depth:3;

   unsigned int  ignore_children:1;

   unsigned int  idle_notification:1;

   unsigned int  request_pending:1;

   unsigned int  deferred_resume:1;

   enum rpm_request request;

   enum rpm_status  runtime_status;

   int   runtime_error;

  #endif

  };

  

  struct dev_pm_ops {

   int (*prepare)(struct device *dev);

   void (*complete)(struct device *dev);

   int (*suspend)(struct device *dev);

   int (*resume)(struct device *dev);

   int (*freeze)(struct device *dev);

   int (*thaw)(struct device *dev);

   int (*poweroff)(struct device *dev);

   int (*restore)(struct device *dev);

   int (*suspend_noirq)(struct device *dev);

   int (*resume_noirq)(struct device *dev);

   int (*freeze_noirq)(struct device *dev);

   int (*thaw_noirq)(struct device *dev);

   int (*poweroff_noirq)(struct device *dev);

   int (*restore_noirq)(struct device *dev);

   int (*runtime_suspend)(struct device *dev);

   int (*runtime_resume)(struct device *dev);

   int (*runtime_idle)(struct device *dev);

  };

 

 

二、device中的dev_pm_info结构体

  device结构体中的power项用来将该设备纳入电源管理的范围,记录电源管理的一些信息。

  在注册设备的时候调用函数device_add()来向sysfs系统添加power接口和注册进电源管理系统,代码片段如下:

  ...

  error = dpm_sysfs_add(dev);  @kernel/drivers/base/power/sysfs.c

  if (error)

   goto DPMError;

  device_pm_add(dev);      @kernel/drivers/base/power/main.c

  ...

  其中dpm_sysfs_add()函数用来向sysfs文件系统中添加相应设备的power接口文件,如注册mt6516_tpd paltform device的时候,会在sysfs中出现如下目录和文件:

  #pwd

  /sys/devices/platform/mt6516-tpd

  #cd mt6516-tpd

  #ls -l

  -rw-r--r-- root     root         4096 2010-01-02 06:35 uevent

  -r--r--r-- root     root         4096 2010-01-02 06:39 modalias

  lrwxrwxrwx root     root              2010-01-02 06:39 subsystem -> ../../../bus/platform

  drwxr-xr-x root     root              2010-01-02 06:35 power

  lrwxrwxrwx root     root              2010-01-02 06:39 driver -> ../../../bus/platform/drivers/mt6516-tpd

  #cd power

  #ls -l

  -rw-r--r-- root     root         4096 2010-01-02 06:39 wakeup

  

  源码片段:

  static DEVICE_ATTR(wakeup, 0644, wake_show, wake_store);

  static struct attribute * power_attrs[] = {

   &dev_attr_wakeup.attr,

   NULL,

  };

  static struct attribute_group pm_attr_group = {

   .name = "power",  // attribute_group结构体的name域不为NULL的话,都会已name建立一个属性目录的

   .attrs = power_attrs,

  };

  

  int dpm_sysfs_add(struct device * dev)

  {

   return sysfs_create_group(&dev->kobj, &pm_attr_group); //在当前device的kobject结构体对应的目录下建立

  }

  

  其中的device_pm_add()函数会将该设备插入到电源管理的核心链表dpm_list中统一管理。

  值得一提的是,在函数device_initialize()会调用函数device_pm_init()来初始化该device结构体的power域:

  dev->power.status = DPM_ON;

  

  void device_pm_add(struct device *dev)

  {

   ...

   mutex_lock(&dpm_list_mtx);

   if (dev->parent) {

    if (dev->parent->power.status >= DPM_SUSPENDING) 

     // 如果某设备处于DPM_SUSPENDING极其之后的状态,此时不允许以该设备为父设备注册子设备

     dev_warn(dev, "parent %s should not be sleeping/n", dev_name(dev->parent));

   } else if (transition_started) { // transition_started全局变量包含在PM transition期间不允许注册设备

    /*

     * We refuse to register parentless devices while a PM

     * transition is in progress in order to avoid leaving them

     * unhandled down the road

     */

    dev_WARN(dev, "Parentless device registered during a PM transaction/n");

   }

  

   list_add_tail(&dev->power.entry, &dpm_list); // 将device结构体通过power.entry项链接进dpm_list

   mutex_unlock(&dpm_list_mtx);

  }

  

  void device_pm_remove(struct device *dev)

  {

   ...

   mutex_lock(&dpm_list_mtx);

   list_del_init(&dev->power.entry);

   mutex_unlock(&dpm_list_mtx);

   pm_runtime_remove(dev);

  }

 

  举例说明:

  

  我们熟知的platform bus在系统中也是作为一种设备注册进了系统,在sysfs文件系统中的位置是:

  /sys/devices/platform。使用函数device_register(&platform_bus)进行注册,调用device_add()函数,

  注册ok之后,也会出现目录/sys/devices/platform/power。最后也会将其添加进dpm_list中。

  

  i2c控制器外设代表的设备是注册在platform总线上的,也就是说它的父设备是platform。

  最终在platform_device_add()中会调用函数device_add()函数来添加设备,最终也会在mt6516-i2c.0/

  mt6516-i2c.1/mt6516-i2c.2中出现一个power目录,同时这3个platform设备会依靠

  platform_device.dev.power.entry连接件链接到电源管理核心链表dpm_list中。

  /sys/devices/platform/mt6516-i2c.2/power

  

  每一个i2c控制器都会在系统中至少注册成一个适配器(adapter),该结构体将会间接提供给i2c设备的驱动来使用,以避免直接使用i2c控制器结构体。这个适配器没有对应的driver,在错综复杂的i2c架构中,相对于只起到了一个承上启下的作用,上接i2c控制器的结构体及driver,下接i2c设备的结构体i2c_client和特点的driver。adapter.dev.parent为i2c控制器对应的device,所以就会出现名为i2c-0/1/2的设备kobject,只是该设备的bus总线和device_type是:

  adap->dev.bus = &i2c_bus_type;

  adap->dev.type = &i2c_adapter_type;

  然后调用函数device_register(&adap->dev);来注册这个device,所以在对应的i2c-0/1/2目录下也会出现power目录。

  /sys/devices/platform/mt6516-i2c.2/i2c-2/power

  

  i2c设备会通过自动检测或者事先静态描述的方式来注册进系统,不管什么方式,都会调用到函数:i2c_new_device()

  struct i2c_client *client;

  client->dev.parent = &client->adapter->dev;

  client->dev.bus = &i2c_bus_type;

  client->dev.type = &i2c_client_type;

  dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),

       client->addr);

  status = device_register(&client->dev);

  可以看得出来名字是什么了,例如:2-00aa

  #ls -l /sys/devices/platform/mt6516-i2c.2/i2c-2/2-00aa

  -rw-r--r-- root     root         4096 2010-01-02 06:35 uevent

  -r--r--r-- root     root         4096 2010-01-02 06:38 name

  -r--r--r-- root     root         4096 2010-01-02 06:38 modalias

  lrwxrwxrwx root     root              2010-01-02 06:38 subsystem -> ../../../../../bus/i2c

  drwxr-xr-x root     root              2010-01-02 06:35 power

  lrwxrwxrwx root     root              2010-01-02 06:38 driver -> ../../../../../bus/i2c/drivers/mt6516-tpd

  

三、bus_type、device_driver、device_type、class中的dev_pm_ops方法结构体

  在新的linux内核中,已不再有subsystem数据结构了,他的功能被kset代替。

  

  全局变量bus_kset初始化:kernel_init()-->do_basic_setup()-->driver_init()-->buses_init()

  bus_kset = kset_create_and_add("bus", &bus_uevent_ops, NULL);

  

  1. 总线类型结构体:bus_type,以platform和i2c总线为例:

  @kernel/drivers/base/platform.c

  static const struct dev_pm_ops platform_dev_pm_ops = {

   .prepare = platform_pm_prepare,   // 

   .complete = platform_pm_complete,  //

   .suspend = platform_pm_suspend,   //

   .resume = platform_pm_resume,    //

   .freeze = platform_pm_freeze,

   .thaw = platform_pm_thaw,

   .poweroff = platform_pm_poweroff,  //

   .restore = platform_pm_restore,

   .suspend_noirq = platform_pm_suspend_noirq,

   .resume_noirq = platform_pm_resume_noirq,

   .freeze_noirq = platform_pm_freeze_noirq,

   .thaw_noirq = platform_pm_thaw_noirq,

   .poweroff_noirq = platform_pm_poweroff_noirq,

   .restore_noirq = platform_pm_restore_noirq,

   .runtime_suspend = platform_pm_runtime_suspend,

   .runtime_resume = platform_pm_runtime_resume,

   .runtime_idle = platform_pm_runtime_idle,

  };

  

  struct bus_type platform_bus_type = {

   .name  = "platform",

   .dev_attrs = platform_dev_attrs,

   .match  = platform_match,

   .uevent  = platform_uevent,

   .pm  = &platform_dev_pm_ops,

  };

  从上面的dev_pm_ops结构体中拿出最普遍使用的函数指针来说明一下,对于bus_type它的电源管理是如何实现的。

  static int platform_pm_prepare(struct device *dev)

  {

   struct device_driver *drv = dev->driver;

   int ret = 0;

  

   if (drv && drv->pm && drv->pm->prepare)

    ret = drv->pm->prepare(dev);

  

   return ret;

  }

  static void platform_pm_complete(struct device *dev)

  {

   struct device_driver *drv = dev->driver;

  

   if (drv && drv->pm && drv->pm->complete)

    drv->pm->complete(dev);

  }

  可以看出这两个函数都最终是利用了device_driver结构体中的dev_pm_ops函数方法结构体中的对应函数指针。

  

  ////////////////////////////////////////////

  static int platform_legacy_suspend(struct device *dev, pm_message_t mesg)

  {

   struct platform_driver *pdrv = to_platform_driver(dev->driver);

   struct platform_device *pdev = to_platform_device(dev);

   int ret = 0;

  

   if (dev->driver && pdrv->suspend)

    ret = pdrv->suspend(pdev, mesg);

  

   return ret;

  }

  

  static int platform_legacy_resume(struct device *dev)

  {

   struct platform_driver *pdrv = to_platform_driver(dev->driver);

   struct platform_device *pdev = to_platform_device(dev);

   int ret = 0;

  

   if (dev->driver && pdrv->resume)

    ret = pdrv->resume(pdev);

  

   return ret;

  }

  ////////////////////////////////////////////

  static int platform_pm_suspend(struct device *dev)

  {

   struct device_driver *drv = dev->driver;

   int ret = 0;

  

   if (!drv)

    return 0;

  

   if (drv->pm) {

    if (drv->pm->suspend)

     ret = drv->pm->suspend(dev);

   } else {

    ret = platform_legacy_suspend(dev, PMSG_SUSPEND);

   }

  

   return ret;

  }

  

  static int platform_pm_resume(struct device *dev)

  {

   struct device_driver *drv = dev->driver;

   int ret = 0;

  

   if (!drv)

    return 0;

  

   if (drv->pm) {

    if (drv->pm->resume)

     ret = drv->pm->resume(dev);

   } else {

    ret = platform_legacy_resume(dev);

   }

  

   return ret;

  }

    这里suspend和resume函数也是最终都是调用了device_driver结构体的dev_pm_ops方法结构体中的对应函数指针(device_driver.pm项被初始化),否则使用老式的方法:platform_legacy_suspend(dev, PMSG_SUSPEND)和platform_legacy_resume(dev)。根据这两个函数的源码可以看出。一般地,在我们的platform device的platform driver定义中,都是实现了pdrv.suspend和pdrv.resume函数,而并没有实现pdrv.driver.suspend和pdrv.driver.resume函数,其余三个函数可以在platform_driver_register()函数中看出:

  int platform_driver_register(struct platform_driver *drv)

  {

   drv->driver.bus = &platform_bus_type;

   if (drv->probe)

    drv->driver.probe = platform_drv_probe;

   if (drv->remove)

    drv->driver.remove = platform_drv_remove;

   if (drv->shutdown)

    drv->driver.shutdown = platform_drv_shutdown;

  

   return driver_register(&drv->driver);

  }

  

  i2c总线注册没有使用新式的电源管理方法:dev_pm_ops,仍然使用老式的方式:

  @kernel/drivers/i2c/i2c-core.c

  struct bus_type i2c_bus_type = {

   .name  = "i2c",

   .match  = i2c_device_match,

   .probe  = i2c_device_probe,

   .remove  = i2c_device_remove,

   .shutdown = i2c_device_shutdown,

   .suspend = i2c_device_suspend,

   .resume  = i2c_device_resume,

  };

  

  static int i2c_device_suspend(struct device *dev, pm_message_t mesg)

  {

   struct i2c_client *client = i2c_verify_client(dev);

   struct i2c_driver *driver;

  

   if (!client || !dev->driver)

    return 0;

   driver = to_i2c_driver(dev->driver);

   if (!driver->suspend)

    return 0;

   return driver->suspend(client, mesg);

  }

  

  static int i2c_device_resume(struct device *dev)

  {

   struct i2c_client *client = i2c_verify_client(dev);

   struct i2c_driver *driver;

  

   if (!client || !dev->driver)

    return 0;

   driver = to_i2c_driver(dev->driver);

   if (!driver->resume)

    return 0;

   return driver->resume(client);

  }

  // 实际上都是调用的i2c_driver结构体的suspend和resume函数。

  

  2. device_type结构体暂时还没有找到有哪一个模块使用了新式了dev_pm_ops电源管理方法,一般都是没有实现这部分。

  

  3. class结构体也没有找到使用dev_pm_ops方法结构体的地方,先暂时放一放。

  

  4. device_driver

    struct device_driver {

    const char  *name;

    struct bus_type  *bus;

    ...

    int (*probe) (struct device *dev);

    int (*remove) (struct device *dev);

    void (*shutdown) (struct device *dev);

    int (*suspend) (struct device *dev, pm_message_t state);

    int (*resume) (struct device *dev);

    const struct attribute_group **groups;

   

    const struct dev_pm_ops *pm;

   

    struct driver_private *p;

   };

   

   struct i2c_driver {

    ...

    /* driver model interfaces that don't relate to enumeration  */

    void (*shutdown)(struct i2c_client *);

    int (*suspend)(struct i2c_client *, pm_message_t mesg);

    int (*resume)(struct i2c_client *);

    ...

    struct device_driver driver;

    const struct i2c_device_id *id_table;

   

    /* Device detection callback for automatic device creation */

    int (*detect)(struct i2c_client *, int kind, struct i2c_board_info *);

    const struct i2c_client_address_data *address_data;

    struct list_head clients;

   };

   一般都是实现了platform driver和i2c_driver结构体的suspend和resume函数,并没有使用新式的电源管理方式。

转载出处:http://blog.csdn.net/bingqingsuimeng/article/details/7934389
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息