您的位置:首页 > 编程语言 > Java开发

java 并发包重要类源码分析

2014-10-28 15:34 609 查看

ConcurrentHashMap

ConcurrentHashMap是线程安全的HashMap的实现。
1)添加
put(Object key , Object value)
ConcurrentHashMap并没有采用synchronized进行控制,而是使用了ReentrantLock。

这里计算出key的hash值,根据hash值获取对应的数组中的segment对象。接下来的工作都交由segment完成。
segment可以看成是HashMap的一个部分,(ConcurrentHashMap基于concurrencyLevel划分出了多个segment来对key-value进行存储)每次操作都只对当前segment进行锁定,从而避免每次put操作锁住整个map。

这个方法进来就上锁(lock),并在finally中确保释放锁(unlock)。
添加key-value的过程中,先判断当前存储对象个数加1后是否大于threshold,如果大于则进行扩容(对象数组扩大两倍,进行重新hash,转移到新数组)。
如果不大于,则进行后续操作。通过对hash值和对象数组大小减1的值进行按位与操作(取余),得到当前key需要放入数组的位置,接着寻找对应位置上的hashEntry对象链表,并进行遍历。
如果找到相同key值的Entry,则替换该Entry对象的value。
如果没有找到就创建一个Entry对象,赋值给对应位置的数组对象,并构成链表。
注意:采用segment这种方式,在并发操作过程中,可以在很多程度上减少阻塞现象。

2)删除
remove(Object key)

和put类似,删除也要根据hash先获得segment,然后在segment上执行remove操作。

segment的remove操作,首先加锁,然后对hash值与数组大小减1的值按位与操作,得到数组对应位置上的HashEntry对象,接下来遍历此链表,查找hash值相等并且key相等(equals)的对象。
如果没有找到,返回null,释放锁。
如果找到了,则重新创建位于删除元素之前的所有HashEntry,位于其后的不用处理。释放锁!

3)获取
get(Object key)
直接看看segment中的get操作,如下:

可以看出并没有加锁操作,只有v==null时,进入readValueUnderLock才有加锁操作。
这里假设一种情况,例如两条线程a、b,a执行get操作,b执行put操作。
当a执行到getFirst,与当前数组长度减1按位与操作后得到指定位置index,此时cpu将执行权交给b,b线程put一对key-value,导致扩容并重新hash排列,然后cpu又将执行权还给a,a然后根据之前的index去获取HashEntry就会发生问题。
当然这种情况发生的概率很小。

4)遍历
其实这个过程和读取过程类似,读取所有分段中的数据即可。

ConcurrentHashMap默认情况下采用将数据分为16个段进行存储,并且每个段各自拥有自己的锁,锁仅用于put和remove等改变集合对象的操作,基于voliate及hashEntry链表的不变性实现读取的不加锁。
这些方式使得ConcurrentHashMap能够保持极好的并发操作,尤其是对于读远比插入和删除频繁的map而言,而它采用的这些方法也可谓是对于java内存模型、并发机制深刻掌握的体现,是一个设计得非常不错的支持高并发的集合对象。
——摘自《分布式java应用》

CopyOnWriteArrayList

CopyOnWriteArrayList是一个线程安全、并且在读操作时无锁的ArrayList。
1)添加
add(E e)

这里同样没有使用synchronized关键字,而是使用ReentrantLock。
和ArrayList不同的是,这里每次都会创建一个新的object数组,大小比之前数组大1。将之前的数组复制到新数组,并将新加入的元素加到数组末尾。

2)删除
remove(Object o)

此方法为什么这么直接进行数组的复制呢?为何不适用system的arrayCopy来完成?

3)获取
get(int index)

这里有可能脏读。但是销量非常高。
//通过看集合包和并发包可以看出一些不同的编程思路。这里为什么就不事先做范围的检查?

从上可见,CopyOnWriteArrayList基于ReentrantLock保证了增加元素和删除元素动作的互斥。在读操作上没有任何锁,这样就保证了读的性能,带来的副作用是有时候可能会读取到脏数据。

CopyOnWriteArraySet

CopyOnWriteArraySet是基于CopyOnWriteArrayList的,可以知道set是不容许重复数据的,因此add操作和CopyOnWriteArrayList有所区别,他是调用CopyOnWriteArrayList的addIfAbsent方法。

由此可见,addIfAbsent需要每次都遍历,在add方面,CopyOnWriteArraySet效率要比CopyOnWriteArrayList低一点。

ArrayBlockingQueue

ArrayBlockingQueue是一个基于数组、先进先出、线程安全的集合类,其特点是实现指定时间的阻塞读写,并且容量是可以限制的。
1)创建

初始化锁和两个锁上的Condition,一个为notEmpty,一个为notFull。

2)添加
offer(E e , long timeout , TimeUtil unit)

这个方法将元素插入数组的末尾,如果数组满,则进入等待,只到以下三种情况发生才继续:
被唤醒、达到指定的时间、当前线程被中断。
该方法首先将等待时间转换成纳秒。然后加锁,如果数组未满,则在末尾插入数据,如果数组已满,则调用notFull.awaitNanos进行等待。如果被唤醒或超时,重新判断是否满。如果线程被interrupt,则直接抛出异常。

另外一个不带时间的offer方法在数组满的情况下不进去等待,而是直接返回false。

同时还可以选择put方法,此方法在数组已满的情况下会一直等待,知道数组不为空或线程被interrupt。

3)获取
poll(long timeout, TimeUnit unit)

poll获取队列中的第一个元素,如果队列中没有元素,则进入等待。
poll首先将制定timeout转换成纳秒,然后加锁,如果数组个数不为0,则从当前对象数组中获取最后一个元素,在获取后将位置上的元素置为null。
如果数组中的元素个数为0,首先判断timeout是否小于等于0,若小于0则直接返回null。若大于则进行等待,如果被唤醒或者超时,重新判断数据元素个数是否大于0。
如果线程被interrupt,则直接抛出InterruptedException。
和offer一样,不带时间的poll方法在数组元素个数为0直接返回null,不进行等待。
take方法在数据为空的情况下会一直等待,只到数组不为空或者interrupt。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: