您的位置:首页 > 运维架构 > Linux

Linux/UNIX之进程环境

2014-10-20 16:08 337 查看

进程环境

进程终止

有8种方式使进程终止,当中5中为正常终止,它们是

1) 从main返回

2) 调用exit

3) 调用_exit或_Exit

4) 最后一个线程从其启动例程返回

5) 最后一个线程调用pthread_exit

异常终止有3中方式

6) 调用abort

7) 接到一个信号并终止

8) 最后一个线程对取消请求做出对应

exit函数

#include <stdlib.h>

void exit(int status);

void _Exit(int status);

#include <unistd.h>

void _exit(int status);

三个函数都带有一个整形參数,成为终止状态。

exit函数总是先运行一个标准I/O库的清理关闭操作:为所以打开流调用fclose函数,这会造成所以缓冲区的输出数据都被冲洗。

exit(0)等价于return(0)。

atexit函数

依照ISO C的规定,一个进程能够登记多达32个函数,这些函数将由exit自己主动调用。我们称这些函数为终止处理程序,并调用atexit函数来登记这些函数。

#include <stdlib.h>
int atexit(void (*function)(void));
当中,atexit的參数是一个函数地址,当调用此函数时无需向它传送不论什么參数,也不期望它返回一个值。exit调用这些函数的顺序与他们被atexit登记的顺序相反。同一函数如登记多次,则也会被调用多次。例如以下是使用atexit的程序。
#include "stdlib.h"
#include "stdio.h"
static void my_exit1(void);
static void my_exit2(void);

int main(void)
{
if (atexit(my_exit2) != 0)
perror("can't register my_exit2");

if (atexit(my_exit1) != 0)
perror("can't register my_exit1");
if (atexit(my_exit1) != 0)
perror("can't register my_exit1");

printf("main is done\n");
return(0);
}
static void my_exit1(void)
{
printf("first exit handler\n");
}

static void my_exit2(void)
{
printf("second exit handler\n");
}


输出结果例如以下:

main is done

first exit handler

first exit handler

second exit handler

命令行參数

内核是程序运行的唯一方法是调用exec函数。当运行一个程序时,exec的进程可将命令行參数传递给该新程序。

C程序的存储空间布局

正文段:这是由CPU运行的机器指令部分。通常正文段是能够共享的。

初始化数据段:通常将此段成为数据段。包括程序中明白赋初值的全局变量或静态变量。

非初始化数据段:通常称此段为BBS段(block startedby ymbol),未赋初值的全局变量或静态变量。在程序运行之前,内核将此段的数据初始化为0或空指针。

栈:自己主动变量以及每次函数调用时所需保存的信息都存放在此段中。

堆:通常在堆中进行动态存储分配。

C程序典型的存储安排例如以下所看到的:



用size命令报告正文段、数据段和bbs段的长度。

环境表和环境变量

环境表

每个程度都会接收到一张环境表。环境表是一个字符指针数组,当中每个指针包括一个以null结束的C字符串的地址。全局变量environ则包括了该指针数组的地址:

extern char**environ

比如,假设该环境包括5个字符串,则其示意图例如以下



当中每一个字符串结尾都显示的有一个null字符。我们称environ为环境指针,指针数组为环境表,当中各个指针所指字符串为环境字符串。

环境变量

环境字符串的形式通常例如以下:

name = value

ISO C定义了一个函数getenv用于取环境变量值:

#include <stdlib.h>

char *getenv(const char *name);

此函数返回一个指针,指向name = value字符串中的value。未找到返回NULL。

#include <stdlib.h>

int putenv(char *string);

int setenv(const char *name, const char*value, int overwrite);

int unsetenv(const char *name);

putenv取形式为name = value的字符串,将其放到环境表中。假设name已近存在,则先删除原定义。

setenv将name设置为value。

unsetenv删除name的定义。

环境表和环境字符串通常存储在空间的顶部(栈之上)

setjmp和longjmp

C语言中goto是不能跨越函数的,运行这类跳转功能的函数是setjmp和longjmp。

#include <setjmp.h>

int setjmp(jmp_buf env);

void longjmp(jmp_buf env, int val);

通过程序来看看自己主动变量、全局变量、寄存器变量、静态变量和易失变量的不同情况:

#include <stdio.h>
#include <setjmp.h>

static void f1(int, int, int, int);
static void f2(void);

static jmp_buf  jmpbuffer;
static int      globval;

int main(void)
{
int             autoval;
register int    regival;
volatile int    volaval;
static int      statval;

globval = 1; autoval = 2; regival = 3; volaval = 4; statval = 5;

if (setjmp(jmpbuffer) != 0) {
printf("after longjmp:\n");
printf("globval = %d, autoval = %d, regival = %d,"
" volaval = %d, statval = %d\n",
globval, autoval, regival, volaval, statval);
exit(0);
}

/*
* Change variables after setjmp, but before longjmp.
*/
globval = 95; autoval = 96; regival = 97; volaval = 98;
statval = 99;

f1(autoval, regival, volaval, statval); /* never returns */
exit(0);
}

static void
f1(int i, int j, int k, int l)
{
printf("in f1():\n");
printf("globval = %d, autoval = %d, regival = %d,"
" volaval = %d, statval = %d\n", globval, i, j, k, l);
f2();
}

static void
f2(void)
{
longjmp(jmpbuffer, 1);
}


其运行结果例如以下:

in f1():

globval = 95, autoval = 96, regival = 97,volaval = 98, statval = 99

after longjmp:

globval = 95, autoval = 2, regival = 3,volaval = 98, statval = 99

可见全局变量、静态变量和易失变量不受影响,自己主动变量和寄存器变量是否变化是不确定的(虽然这里显示恢复setjmp的值)。

getrlimit和setrlimit函数

#include <sys/time.h>

#include <sys/resource.h>

int getrlimit(int resource, struct rlimit*rlim);

int setrlimit(int resource, const structrlimit *rlim);

每一个进程都有一组资源限制,当中一些能够用getrlimit和setrlimit函数查询和更改。进程的资源限制一般是在系统初始化时由进程0建立的,然后由每一个后序进程继承。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: