您的位置:首页 > 其它

UVa 297 Quadtrees(四分树)

2014-10-09 18:32 471 查看
题意 可以用一个四分图表示一32*32的黑白图像 求两个四分树对应图像相加所得图形黑色部分有多少像素

直接用一个32*32的矩阵表示图 黑色为非0白色为0 递归建图 最后有多少个非零就是答案了

#include<cstdio>
#include<cstring>
using namespace std;
const int L = 32, N = 1050;
char s
;
int ans[L][L], cnt;

void draw(char *s, int &p, int r, int c, int w)
{
    char ch = s[p++];
    if(ch == 'p')
    {
        draw(s, p, r        , c + w / 2, w / 2);
        draw(s, p, r        , c        , w / 2);
        draw(s, p, r + w / 2, c        , w / 2);
        draw(s, p, r + w / 2, c + w / 2, w / 2);
    }
    else if(ch == 'f')
    {
        for(int i = r; i < r + w; ++i)
            for(int j = c; j < c + w; ++j)
                if(ans[i][j] == 0)
                    ans[i][j] = ++cnt;
    }
}

int main()
{
    int cas;
    scanf("%d", &cas);
    while(cas--)
    {
        memset(ans, 0, sizeof(ans));
        cnt = 0;
        for(int i = 0; i < 2; ++i)
        {
            scanf("%s", s);
            int p = 0;
            draw(s, p, 0, 0, L);
        }
        printf("There are %d black pixels.\n", cnt);
    }
    return 0;
}




Quadtrees

A quadtree is a representation format used to encode images. The fundamental idea behind the quadtree is that any image can be split into four quadrants. Each quadrant may again be split in four
sub quadrants, etc. In the quadtree, the image is represented by a parent node, while the four quadrants are represented by four child nodes, in a predetermined order.

Of course, if the whole image is a single color, it can be represented by a quadtree consisting of a single node. In general, a quadrant needs only to be subdivided if it consists of pixels of different
colors. As a result, the quadtree need not be of uniform depth.

A modern computer artist works with black-and-white images of

units,
for a total of 1024 pixels per image. One of the operations he performs is adding two images together, to form a new image. In the resulting image a pixel is black if it was black in at least one of the component images, otherwise it is white.

This particular artist believes in what he calls the preferred fullness: for an image to be interesting (i.e. to sell for big bucks) the most important property is the number of filled
(black) pixels in the image. So, before adding two images together, he would like to know how many pixels will be black in the resulting image. Your job is to write a program that, given the quadtree representation of two images, calculates the number of pixels
that are black in the image, which is the result of adding the two images together.

In the figure, the first example is shown (from top to bottom) as image, quadtree, pre-order string (defined below) and number of pixels. The quadrant numbering is shown at the top of the figure.



Input Specification

The first line of input specifies the number of test cases (N) your program has to process.
The input for each test case is two strings, each string on its own line. The string is the pre-order representation of a quadtree, in which the letter 'p' indicates a parent node, the
letter 'f' (full) a black quadrant and the letter 'e' (empty) a white quadrant. It is guaranteed that each string represents a valid quadtree, while the depth of the tree is not more than 5 (because each pixel has only one color).

Output Specification

For each test case, print on one line the text 'There are X black pixels.', where X is the number of black pixels in the resulting image.

Example Input

3
ppeeefpffeefe
pefepeefe
peeef
peefe
peeef
peepefefe


Example Output

There are 640 black pixels.
There are 512 black pixels.
There are 384 black pixels.
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: