您的位置:首页 > 其它

约瑟夫环问题--递推解法

2014-10-06 22:31 337 查看
利用数学推导,如果能得出一个通式,就可以利用递归、循环等手段解决。下面给出推导的过程:

(1)第一个被删除的数为 (m - 1) % n。

(2)假设第二轮的开始数字为k,那么这n - 1个数构成的约瑟夫环为k, k + 1, k + 2, k +3, .....,k - 3, k - 2。做一个简单的映射。

k -----> 0
k+1 ------> 1
k+2 ------> 2
...
...

k-2 ------> n-2

这是一个n -1个人的问题,如果能从n - 1个人问题的解推出 n 个人问题的解,从而得到一个递推公式,那么问题就解决了。假如我们已经知道了n -1个人时,最后胜利者的编号为x,利用映射关系逆推,就可以得出n个人时,胜利者的编号为 (x + k) % n。其中k等于m % n。代入(x + k) % n <=> (x + (m % n))%n <=> (x%n + (m%n)%n)%n <=> (x%n+m%n)%n <=> (x+m)%n

(3)第二个被删除的数为(m - 1) % (n - 1)。

(4)假设第三轮的开始数字为o,那么这n - 2个数构成的约瑟夫环为o, o + 1, o + 2,......o - 3, o - 2.。继续做映射。

o -----> 0
o+1 ------> 1
o+2 ------> 2
...
...

o-2 ------> n-3

这是一个n - 2个人的问题。假设最后的胜利者为y,那么n -1个人时,胜利者为 (y + o) % (n -1 ),其中o等于m % (n -1 )。代入可得 (y+m) % (n-1)

要得到n - 1个人问题的解,只需得到n - 2个人问题的解,倒推下去。只有一个人时,胜利者就是编号0。下面给出递推式:

f [1] = 0;
f [ i ] = ( f [i -1] + m) % i; (i>1)
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: