您的位置:首页 > 编程语言 > Java开发

《java.util.concurrent 包源码阅读》21 CyclicBarrier和CountDownLatch

2014-09-01 14:28 656 查看
CyclicBarrier是一个用于线程同步的辅助类,它允许一组线程等待彼此,直到所有线程都到达集合点,然后执行某个设定的任务。

现实中有个很好的例子来形容:几个人约定了某个地方集中,然后一起出发去旅行。每个参与的人就是一个线程,CyclicBarrier就是那个集合点,所有人到了之后,就一起出发。

CyclicBarrier的构造函数有两个:

// parties是参与等待的线程的数量,barrierAction是所有线程达到集合点之后要做的动作
public CyclicBarrier(int parties, Runnable barrierAction);

// 达到集合点之后不执行操作的构造函数
public CyclicBarrier(int parties)


需要说明的是,CyclicBarrier只是记录线程的数目,CyclicBarrier是不创建任何线程的。线程是通过调用CyclicBarrier的await方法来等待其他线程,如果调用await方法的线程数目达到了预设值,也就是上面构造方法中的parties,CyclicBarrier就会开始执行barrierAction。

因此我们来看CyclicBarrier的核心方法dowait,也就是await方法调用的私有方法:

private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Generation g = generation;

if (g.broken)
throw new BrokenBarrierException();

if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
// count就是预设的parties,count减1的值表示还剩余几个
// 线程没有达到该集合点
int index = --count;
// index为0表示所有的线程都已经达到集合点,这时
// 占用最后一个线程,执行运行设定的任务
if (index == 0) {
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
// 唤醒其他等待的线程,
// 更新generation以便下一次运行
nextGeneration();
return 0;
} finally {
// 如果运行任务时发生异常,设置状态为broken
// 并且唤醒其他等待的线程
if (!ranAction)
breakBarrier();
}
}

// 还有线程没有调用await,进入循环等待直到其他线程
// 达到集合点或者等待超时
for (;;) {
try {
// 如果没有设置超时,进行无超时的等待
if (!timed)
trip.await();
// 有超时设置,进行有超时的等待
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
// generation如果没有被更新表示还是当前的运行
// (generation被更新表示集合完毕并且任务成功),
// 在状态没有被设置为broken状态的情况下,遇到线程
// 中断异常表示当前线程等待失败,需要设置为broken
// 状态,并且抛出中断异常
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// else对应的条件为:g != generation || g.broken
// 表示要么generation已经被更新意味着所有线程已经到达
// 集合点并且任务执行成功,要么就是是broken状态意味着
// 任务执行失败,无论哪种情况所有线程已经达到集合点,当
// 前线程要结束等待了,发生了中断异常,需要中断当前线程
// 表示遇到了中断异常。
Thread.currentThread().interrupt();
}
}

// 如果发现当前状态为broken,抛出异常
if (g.broken)
throw new BrokenBarrierException();
// generation被更新表示所有线程都已经达到集合点
// 并且预设任务已经完成,返回该线程进入等待顺序号
if (g != generation)
return index;
// 等待超时,设置为broken状态并且抛出超时异常
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}


1. 任何一个线程等待时发生异常,CyclicBarrier都将被设置为broken状态,运行都会失败

2. 每次运行成功之后CyclicBarrier都会清理运行状态,这样CyclicBarrier可以重新使用

3. 对于设置了超时的等待,在发生超时的时候会引起CyclicBarrier的broken

说完了CyclicBarrier,再来说说CountDownLatch。

CountDownLatch同样也是一个线程同步的辅助类,同样适用上面的集合点的场景来解释,但是运行模式完全不同。

CyclicBarrier是参与的所有的线程彼此等待,CountDownLatch则不同,CountDownLatch有一个导游线程在等待,每个线程报到一下即可无须等待,等到导游线程发现所有人都已经报到了,就结束了自己的等待。

CountDownLatch的构造方法允许指定参与的线程数量:

public CountDownLatch(int count)


参与线程使用countDown表示报到:

public void countDown() {
sync.releaseShared(1);
}


看到releaseShared很容易使人联想到共享锁,那么试着用共享锁的运行模式来解释就简单得多了:

和信号量的实现类似,CountDownLatch内置一下有限的共享锁。

每个参与线程拥有一把共享锁,调用countDown就等于是释放了自己的共享锁,导游线程await等于一下子要拿回所有的共享锁。那么基于AbstractQueuedSynchronizer类来实现就很简单了:

public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}

public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}


在await时注意到数量是1,其实这个参数对于CountDownLatch实现的Sync类(AbstractQueuedSynchronizer的子类)来说是不起作用的,因为需要保证await获取共享锁时必须拿到所有的共享锁,这个参数也就变得没有意义了。看一下Sync的tryAcquireShared方法就明白了:

protected int tryAcquireShared(int acquires) {
// 和信号量Semaphore的实现一样,使用state来存储count,
// 每次释放共享锁就把state减1,state为0表示所有的共享
// 锁已经被释放。注意:这里的acquires参数不起作用
return (getState() == 0) ? 1 : -1;
}


因此Sync的tryReleaseShared就是更新state(每次state减1):

protected boolean tryReleaseShared(int releases) {
// 每次state减1,当state为0,返回false表示所有的共享锁都已经释放
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}


CyclicBarrier和CountDownLatch本质上来说都是多个线程同步的辅助工具,前者可以看成分布式的,后者可以看出是主从式。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: