您的位置:首页 > 其它

S5PV210(TQ210)学习笔记——触摸屏驱动编写

2014-07-12 02:32 435 查看
转载:/article/1388409.html

电阻式触摸屏的驱动比较简单,可以采用输入子系统驱动框架来编写,而电容式触摸屏的驱动程序相对比较复杂,因为电容触控一般采用I2C接口控制,我在自己编写电容触控驱动的时候郁闷了好几天,当然,并不是因为I2C电容触控驱动繁琐,主要是天嵌TQ210的触摸屏驱动程序是以模块方式提供的,并不开放源代码,也没有提供触控的芯片手册,我曾通过技术咨询群和电话咨询的方式咨询过天嵌相关人士,想跟他们索取触控协议而不要所谓的触控驱动程序源码,但是,天嵌相关人员以保密协议为由(尽管我完全不相信做LCD屏的商家会不告诉你怎么用屏)拒绝提供触控协议。我们不去追究这些无聊的问题,好在天嵌这样的公司(或者是与其合作开发的触摸屏驱动的公司)还没有实力自己做芯片,所以,只要找到触控芯片的型号并根据触控芯片型号找到对应的手册,然后就可以自己编写所谓的电容式触摸屏驱动了。

一 触控芯片分析

首先,卸下触摸屏的四个螺丝并翻过触摸屏来观察,可以在在触摸屏排线上看到触控芯片,仔细观察芯片型号(如果看不清可以用放大镜配合手电筒观看),我们可以看到,TQ210的触摸屏控制芯片是GT811,然后我找到了GT811的芯片手册(这些资料都上传到了我的CSDN资源里,请您支持一下),有了手册,编写驱动就不难了。

GT811引出了6根脚,分别是VCC、GND、I2CSDA、I2CSCL、INT和RESET,虽然INT脚不是必须的,但是开发高效省资源的触屏驱动程序往往都采用中断方式,下面是GT811的引脚图:



我用万能表实际测量了一下触控模块的各个引脚,实际线序是GND、SDA、SDL、INT、RESET和VDD。GT811的初始化顺序如下:

[cpp] view
plaincopy





(1) 初始化INT脚为悬浮输入态并初始化RESET脚为输出态,并输出低电平

(2) 延时1ms

(3) 初始化RESET脚为悬浮输入态,并使能上拉

(4) 写入GT811寄存器配置表

(5) 根据需要配置INT脚

具体的操作可以参见代码部分。

二 I2C驱动编写

I2C驱动也是基于总线结构的,不过分为两种,一种是Legacy方式,另一种是New Style方式,其中,Legacy方式在新内核中已经不支持了,不过韦东山老师的视频中还是分析的Legacy方式,New Style方式你可以自己用Source Insight追踪分析一下,我这里就不多说了,具体的可以参考下面的代码。

[cpp] view
plaincopy





#include <linux/module.h>

#include <linux/input.h>

#include <linux/i2c.h>

#include <linux/gpio.h>

#include <linux/delay.h>

#include <linux/input.h>

#include <plat/gpio-cfg.h>

#include <linux/interrupt.h>

const static unsigned short normal_address[] = {0x5d, I2C_CLIENT_END};

static unsigned gt811_rst;

static unsigned gt811_int;

static struct input_dev *ts_input;

static struct workqueue_struct *wq;

static struct work_struct work;

static struct i2c_client * this_client = NULL;

static unsigned int status = 0;

static int i2c_read_bytes(struct i2c_client *client, uint8_t *buf, int len)

{

struct i2c_msg msgs[2];

int ret=-1;

msgs[0].flags=!I2C_M_RD;

msgs[0].addr=client->addr;

msgs[0].len=2;

msgs[0].buf=&buf[0];

msgs[1].flags=I2C_M_RD;

msgs[1].addr=client->addr;

msgs[1].len=len-2;

msgs[1].buf=&buf[2];

ret=i2c_transfer(client->adapter,msgs, 2);

return ret;

}

static int i2c_write_bytes(struct i2c_client *client,uint8_t *data,int len)

{

struct i2c_msg msg;

int ret=-1;

msg.flags=!I2C_M_RD;

msg.addr=client->addr;

msg.len=len;

msg.buf=data;

ret=i2c_transfer(client->adapter,&msg, 1);

return ret;

}

static const struct i2c_device_id ts_id[] = {

{ "tq210-ts", 0 },

{ }

};

static int ts_init_panel(struct i2c_client *client){

short ret=-1;

uint8_t config_info[] = {

0x06,0xA2,

0x12,0x10,0x0E,0x0C,0x0A,0x08,0x06,0x04,0x02,0x00,0xE2,0x53,0xD2,0x53,0xC2,0x53,

0xB2,0x53,0xA2,0x53,0x92,0x53,0x82,0x53,0x72,0x53,0x62,0x53,0x52,0x53,0x42,0x53,

0x32,0x53,0x22,0x53,0x12,0x53,0x02,0x53,0xF2,0x53,0x0F,0x13,0x40,0x40,0x40,0x10,

0x10,0x10,0x0F,0x0F,0x0A,0x35,0x25,0x0C,0x03,0x00,0x05,0x20,0x03,0xE0,0x01,0x00,

0x00,0x34,0x2C,0x36,0x2E,0x00,0x00,0x03,0x19,0x03,0x08,0x00,0x00,0x00,0x00,0x00,

0x14,0x10,0xEC,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0D,0x40,

0x30,0x3C,0x28,0x00,0x00,0x00,0x00,0xC0,0x12,0x01

};

config_info[62] = 480 >> 8;

config_info[61] = 480 & 0xff;

config_info[64] = 800 >> 8;

config_info[63] = 800 & 0xff;

ret = i2c_write_bytes(client, config_info, sizeof(config_info)/sizeof(config_info[0]));

if(ret < 0) {

printk(KERN_ERR "GT811 Send config failed!\n");

return ret;

}

return 0;

}

static irqreturn_t gt811_int_handler(int irq, void *devid){

disable_irq_nosync(this_client->irq);

queue_work(wq, &work);

return IRQ_RETVAL(IRQ_HANDLED);

}

static void ts_work_func(struct work_struct* work){

int ret;

unsigned char point_data[19] = {0x07, 0x21, 0};

unsigned short input_x = 0;

unsigned short input_y = 0;

unsigned short input_p = 0;

ret=i2c_read_bytes(this_client, point_data, sizeof(point_data)/sizeof(point_data[0]));

if(ret <= 0){

printk("Failed\n");

return;

}

if(point_data[2]&0x1){

status = 1;

input_y = 479-((point_data[4]<<8)|point_data[5]);

input_x = 799-((point_data[6]<<8)|point_data[7]);

input_p = point_data[8];

printk("stat: %d, x: %d, y: %d, p: %d\n", point_data[2], input_x, input_y,

input_p);

}

else if(status){

status = 0;

printk("up\n");

}

enable_irq(this_client->irq);

}

static int ts_probe(struct i2c_client *client, const struct i2c_device_id *id){

int retry, ret;

char test_data;

printk("ts_probe\n");

test_data = 0;

gt811_rst = S5PV210_GPD0(3);

gt811_int = S5PV210_GPH1(6);

gpio_request(gt811_rst, "reset");

gpio_request(gt811_rst, "tsint");

if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))

{

dev_err(&client->dev, "Must have I2C_FUNC_I2C.\n");

return -ENODEV;

}

s3c_gpio_setpull(gt811_rst, S3C_GPIO_PULL_UP);

for(retry=0;retry < 5; retry++)

{

gpio_direction_output(gt811_rst, 0);

msleep(1);

gpio_direction_input(gt811_rst);

msleep(100);

ret =i2c_write_bytes(client, &test_data, 1);

if (ret > 0)

break;

dev_info(&client->dev, "GT811 I2C TEST FAILED!Please check the HARDWARE connect\n");

}

if(ret <= 0)

{

dev_err(&client->dev, "Warnning: I2C communication might be ERROR!\n");

return -ENODEV;

}

for(retry = 0; retry != 5; ++ retry){

ret = ts_init_panel(client);

if(ret != 0){

continue;

}

else{

break;

}

}

if(ret != 0){

printk("GT811 Configue failed!\n");

return -ENODEV;

}

this_client = client;

ts_input = input_allocate_device();

if(IS_ERR(ts_input)){

printk("GT811 allocate ts input device failed!\n");

return -ENOMEM;

}

ts_input->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ;

ts_input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);

ts_input->absbit[0] = BIT(ABS_X) | BIT(ABS_Y) | BIT(ABS_PRESSURE);

input_set_abs_params(ts_input, ABS_Y, 0, 799, 0, 0);

input_set_abs_params(ts_input, ABS_X, 0, 479, 0, 0);

input_set_abs_params(ts_input, ABS_PRESSURE, 0, 255, 0, 0);

ts_input->name = "tq210-ts";

ts_input->phys = "input/ts";

ts_input->id.bustype = BUS_I2C;

ts_input->id.product = 0xBEEF;

ts_input->id.vendor =0xDEAD;

ret = input_register_device(ts_input);

if(ret < 0){

printk("Unable register %s input device!\n", ts_input->name);

input_free_device(ts_input);

return -ENOMEM;

}

client->irq = IRQ_EINT(14);

s3c_gpio_setpull(gt811_int, S3C_GPIO_PULL_UP);

if(request_irq(IRQ_EINT(14), gt811_int_handler, IRQF_TRIGGER_FALLING, "gt811-int", NULL) < 0){

printk("Request irq for gt811 failed!\n");

input_unregister_device(ts_input);

input_free_device(ts_input);

return -ENOMEM;

}

wq = create_workqueue("ts_handle_thread");

if(wq == NULL){

printk(KERN_ALERT "crete workqueue failed!\n");

input_unregister_device(ts_input);

input_free_device(ts_input);

free_irq(IRQ_EINT(14), NULL);

return -ENOMEM;

}

INIT_WORK(&work, ts_work_func);

return 0;

}

static int ts_remove(struct i2c_client *client){

free_irq(IRQ_EINT(14), NULL);

enable_irq(client->irq);

flush_workqueue(wq);

destroy_workqueue(wq);

input_unregister_device(ts_input);

input_free_device(ts_input);

gpio_free(gt811_rst);

gpio_free(gt811_int);

return 0;

}

static struct i2c_driver ts_driver = {

.driver = {

.name = "tq210-ts",

.owner = THIS_MODULE,

},

.probe = ts_probe,

.remove = ts_remove,

.id_table = ts_id,

.address_list = normal_address,

};

static int ts_init(void){

printk("init\n");

i2c_add_driver(&ts_driver);

return 0;

}

static void ts_exit(void){

i2c_del_driver(&ts_driver);

printk("exit\n");

}

module_init(ts_init);

module_exit(ts_exit);

MODULE_LICENSE("GPL");

这并不是完整的代码,一方面是没有做异常处理,另一方面是没有上报消息,只是简单的驱动了TQ210的触摸屏部分,如果您需要拿去自己略作修改即可使用。

三 注册TS的I2C模块设备

注册TS的I2C模块很简单,在Linux内核文件arch/arm/mach-s5pv210/mach-smdkv210.c文件的I2C通道2结构体中加入TS的I2C地址,也就是0x5d,添加后如下

[plain] view
plaincopy





static struct i2c_board_info smdkv210_i2c_devs2[] __initdata = {

/* To Be Updated */

{ I2C_BOARD_INFO("tq210-ts", 0x5d), },

;

四 tslib测试教程(ubuntu)

1. 安装git

[plain] view
plaincopy





sudo apt-get install git

2. 下载最新的tslib

[plain] view
plaincopy





git clone https://github.com/kergoth/tslib
3. 安装auto

[plain] view
plaincopy





sudo apt-get install autoconf automake libtool

4. 编译tslib

[plain] view
plaincopy





./autogen.sh

mkdir tmp

echo "ac_cv_func_malloc_0_nonnull=yes" >arm-linux.cache

./configure --host=arm-linux --cache-file=arm-linux.cache --prefix=$(pwd)/tmp

make

make install

5. 安装tslib

[plain] view
plaincopy





cd tmp

cp * /nfsroot/rootfs -rfd

6. 配置tslib

[plain] view
plaincopy





修改 /etc/ts.conf

将行

# module_raw input

改为:

module_raw input

(实际上就是去掉高行的#号和第一个空格)

7. 配置tslib运行环境变量

[plain] view
plaincopy





export TSLIB_TSDEVICE=/dev/input/event1 //这里需要根据自己的event位置进行修改,新内核在/dev/input/event*

export TSLIB_CALIBFILE=/etc/pointercal

export TSLIB_CONFFILE=/etc/ts.conf

export TSLIB_PLUGINDIR=/lib/ts

export TSLIB_CONSOLEDEVICE=none

export TSLIB_FBDEVICE=/dev/fb0

8. 校正(电容屏实际上不需要校正,仅为了测试触屏驱动)

[plain] view
plaincopy





运行ts_calibrate,并根据提示进行校正

9. 自由画图

[plain] view
plaincopy





运行ts_test,点击draw按钮,可以自由画图,效果如下图。

五 小结

本文中列举的代码是简单的实现了触摸坐标获取,没有实现触摸消息上报等操作,这些操作需要自己来实现。

我自己完善了一下上面讲到的驱动,下面是在TQ210上用最新版tslib测试的效果,同时也支持了多点触摸,代码我上传到了我的资源里,需要的朋友去下载,资源分有点贵啊,见谅。。。



本文链接:/article/1388409.html
本文作者:girlkoo
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: