您的位置:首页 > 其它

u-boot 移植步骤详解

2014-05-29 21:35 281 查看


u-boot 移植步骤详解

来源: 互联网 发布者:书生刺客

1 U-Boot简介

U-Boot,全称Universal Boot Loader,是遵循GPL条款的开放源码项目。从FADSROM、8xxROM、PPCBOOT逐步发展演化而来。其源码目录、编译形式与Linux内核很相似,事实上,不少U-Boot源码就是相应的Linux内核源程序的简化,尤其是一些设备驱动程序,这从U-Boot源码的注释中能体现这一点。但是U-Boot不仅仅支持嵌入式Linux系统的引导,当前,它还支持NetBSD,
VxWorks, QNX, RTEMS, ARTOS, LynxOS嵌入式操作系统。其目前要支持的目标操作系统是OpenBSD,
NetBSD, FreeBSD,4.4BSD,
Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, LynxOS, pSOS, QNX, RTEMS, ARTOS。这是U-Boot中Universal的一层含义,另外一层含义则是U-Boot除了支持PowerPC系列的处理器外,还能支持MIPS、 x86、ARM、NIOS、XScale等诸多常用系列的处理器。这两个特点正是U-Boot项目的开发目标,即支持尽可能多的嵌入式处理器和嵌入式操作系统。就目前来看,U-Boot对PowerPC系列处理器支持最为丰富,对Linux的支持最完善。其它系列的处理器和操作系统基本是在2002年11
月PPCBOOT改名为U-Boot后逐步扩充的。从PPCBOOT向U-Boot的顺利过渡,很大程度上归功于U-Boot的维护人德国DENX软件工程中心Wolfgang Denk[以下简称W.D]本人精湛专业水平和持着不懈的努力。当前,U-Boot项目正在他的领军之下,众多有志于开放源码BOOT LOADER移植工作的嵌入式开发人员正如火如荼地将各个不同系列嵌入式处理器的移植工作不断展开和深入,以支持更多的嵌入式操作系统的装载与引导。

选择U-Boot的理由:

① 开放源码;

② 支持多种嵌入式操作系统内核,如Linux、NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS;

③ 支持多个处理器系列,如PowerPC、ARM、x86、MIPS、XScale;

④ 较高的可靠性和稳定性;

④ 较高的可靠性和稳定性;

⑤ 高度灵活的功能设置,适合U-Boot调试、操作系统不同引导要求、产品发布等;

⑥ 丰富的设备驱动源码,如串口、以太网、SDRAM、FLASH、LCD、NVRAM、EEPROM、RTC、键盘等;

⑦ 较为丰富的开发调试文档与强大的网络技术支持;

2 U-Boot主要目录结构

- board 目标板相关文件,主要包含SDRAM、FLASH驱动;

- common 独立于处理器体系结构的通用代码,如内存大小探测与故障检测;

- cpu 与处理器相关的文件。如mpc8xx子目录下含串口、网口、LCD驱动及中断初始化等文件;

- driver 通用设备驱动,如CFI FLASH驱动(目前对INTEL FLASH支持较好)

- doc U-Boot的说明文档;

- examples可在U-Boot下运行的示例程序;如hello_world.c,timer.c;

- include U-Boot头文件;尤其configs子目录下与目标板相关的配置头文件是移植过程中经常要修改的文件;

- lib_xxx 处理器体系相关的文件,如lib_ppc, lib_arm目录分别包含与PowerPC、ARM体系结构相关的文件;

- net 与网络功能相关的文件目录,如bootp,nfs,tftp;

- post 上电自检文件目录。尚有待于进一步完善;

- rtc RTC驱动程序;

- tools 用于创建U-Boot S-RECORD和BIN镜像文件的工具;

3 U-Boot支持的主要功能

U-Boot可支持的主要功能列表

系统引导 支持NFS挂载、RAMDISK(压缩或非压缩)形式的根文件系统

支持NFS挂载、从FLASH中引导压缩或非压缩系统内核;

基本辅助功能 强大的操作系统接口功能;可灵活设置、传递多个关键参数给操作系统,适合系统在不同开发阶段的调试要求与产品发布,尤对Linux支持最为强劲;

支持目标板环境参数多种存储方式,如FLASH、NVRAM、EEPROM;

CRC32校验,可校验FLASH中内核、RAMDISK镜像文件是否完好;

设备驱动 串口、SDRAM、FLASH、以太网、LCD、NVRAM、EEPROM、键盘、USB、PCMCIA、PCI、RTC等驱动支持;

上电自检功能 SDRAM、FLASH大小自动检测;SDRAM故障检测;CPU型号;

特殊功能 XIP内核引导;

4 移植前的准备

(1)、首先读读uboot自带的readme文件,了解了一个大概。

(2)、看看common.h,这个文件定义了一些基本的东西,并包含了一些必要的头文件。再看看flash.h,这个文件里面定义了 flash_info_t为一个struct。包含了flash的一些属性定义。并且定义了所有的flash的属性,其中,AMD的有:AMD_ID_LV320B,定义为“#define AMD_ID_LV320B 0x22F922F9”。

(3)、对于“./borad/at91rm9200dk/flash.c”的修改,有以下的方面:

“void flash_identification(flash_info_t *info)”这个函数的目的是确认flash的型号。注意的是,这个函数里面有一些宏定义,直接读写了flash。并获得ID号。

(4)、修改:”./board/at91rm9200dk/config.mk”为

TEXT_BASE=0x21f80000 为TEXT_BASE=0x21f00000 (当然,你应该根据自己的板子来修改,和一级boot的定义的一致即可)。

(5)、再修改”./include/configs/at91rm9200dk.h”为

修改flash和SDRAM的大小。

(6)、另外一个要修改的文件是:

./borad/at91rm9200dk/flash.c。这个文件修改的部分比较的多。

a. 首先是OrgDef的定义,加上目前的flash。

b. 接下来,修改”#define FLASH_BANK_SIZE 0x200000”为自己flash的 容量

c. 在修改函数flash_identification(flash_info_t * info)里面的打印信息,这部分将在u-boot启动的时候显示。

d. 然后修改函数flash_init(void)里面对一些变量的赋值。

e. 最后修改的是函数flash_print_info(flash_info_t * info)里面实际打印的函数信息。

f. 还有一个函数需要修改,就是:“flash_erase”,这个函数要检测先前知道的flash类型是否匹配,否则,直接就返回了。把这里给注释掉。

(7)、接下来看看SDRAM的修改。

这个里面对于“SIZE”的定义都是基于字节计算的。

只要修改”./include/configs/at91rm9200dk.h”里面的

“#define PHYS_SDRAM_SIZE 0X200000”就可以了。注意,SIZE是以字节为单位的。

(8)、还有一个地方要注意

就是按照目前的设定,一级boot把u_boot加载到了SDRAM的空间为:21F00000 -> 21F16B10,这恰好是SDRAM的高端部分。另外,BSS为21F1AE34。

(9)、编译后,可以写入flash了。

a. 压缩这个u-boot.bin

“gzip –c u-boot.bin > u-boot.gz”

压缩后的文件大小为:

43Kbytes

b. 接着把boot.bin和u-boot.gz烧到flash里面去。

Boot.bin大约11kBytes,在flash的0x1000 0000 ~ 0x1000 3fff

5 U-Boot移植过程

① 获得发布的最新版本U-Boot源码,与Linux内核源码类似,也是 bzip2的压缩格式。可从U-Boot的官方网站http://sourceforge.net/projects/U-Boot上获得;

② 阅读相关文档,主要是U-Boot源码根目录下的README文档和U-Boot官方网站的DULG(The DENX U-Boot and Linux Guide)文档http://www.denx.de/twiki/bin/view/DULG/Manual。尤其是DULG文档,从如何安装建立交叉开发环境和解决U-Boot移植中常见问题都一一给出详尽的说明;

③ 订阅U-Boot用户邮件列表http://lists.sourceforge.net/lists/listinfo/u-boot-users。在移植U-Boot过程中遇有问题,在参考相关文档和搜索U-Boot-User邮件档案库http://sourceforge.net/mailarchive/forum.php?forum_id=12898仍不能解决的情况下,第一时间提交所遇到的这些问题,众多热心的U-Boot开发人员会乐于迅速排查问题,而且很有可能,W.D本人会直接参与指导;

④ 在建立的开发环境下进行移植工作。绝大多数的开发环境是交叉开发环境。在这方面,DENX 和MontaVista均提供了完整的开发工具集;

⑤ 在目标板与开发主机间接入硬件调试器。这是进行U-Boot移植应当具备且非常关键的调试工具。因为在整个U-Boot的移植工作中,尤其是初始阶段,硬件调试器是我们了解目标板真实运行状态的唯一途径。在这方面,W.D本人和众多嵌入式开发人员倾向于使用BDI2000。一方面,其价格不如ICE调试器昂贵,同时其可靠性高,功能强大,完全能胜任移植和调试U-Boot。另外,网上也有不少关于BDI2000调试方面的参考文档。

⑥ 如果在参考开发板上移植U-Boot,可能需要移除目标板上已有的BOOT LOADER。可以根据板上BOOT LOADER的说明文档,先着手解决在移除当前BOOT LOADER的情况下,如何进行恢复。以便今后在需要场合能重新装入原先的BOOT LOADER。

6. U-Boot移植方法

当前,对于U-Boot的移植方法,大致分为两种。一种是先用BDI2000创建目标板初始运行环境,将U- Boot镜像文件u-boot.bin下载到目标板RAM中的指定位置,然后,用BDI2000进行跟踪调试。其好处是不用将U-Boot镜像文件烧写到 FLASH中去。但弊端在于对移植开发人员的移植调试技能要求较高,BDI2000的配置文件较为复杂。另外一种方法是用BDI2000先将U-Boot 镜像文件烧写到FLASH中去,然后利用GDB和BDI2000进行调试。这种方法所用BDI2000的配置文件较为简单,调试过程与U-Boot移植后运行过程相吻合,即U-Boot先从FLASH中运行,再重载至RAM中相应位置,并从那里正式投入运行。唯一感到有些麻烦的就是需要不断烧写
FLASH。但考虑到FLASH常规擦写次数基本为10万次左右,作为移植U-Boot,不会占用太多的次数,应该不会为FLASH烧写有什么担忧。同时,W. D本人也极力推荐使用后一种方法。笔者建议,除非U-Boot移植资深人士或有强有力的技术支持,建议采用第二种移植方法。

7. U-Boot移植主要修改的文件

从移植U-Boot最小要求-U-Boot能正常启动的角度出发,主要考虑修改如下文件:

① <目标板>.h头文件,如include/configs/RPXlite.h。可以是U-Boot源码中已有的目标板头文件,也可以是新命名的配置头文件;大多数的寄存器参数都是在这一文件中设置完成的;

② <目标板>.c文件,如board/RPXlite/RPXlite.c。它是SDRAM的驱动程序,主要完成SDRAM的UPM表设置,上电初始化。

③ FLASH的驱动程序,如board/RPXlite/flash.c,或common/cfi_flash.c。可在参考已有FLASH驱动的基础上,结合目标板FLASH数据手册,进行适当修改;

④ 串口驱动,如修改cpu/mpc8xx/serial.c串口收发器芯片使能部分。

8. U-Boot移植要点

① BDI2000的配置文件。如果采用第二种移植方法,即先烧入FLASH的方法,配置项只需很少几个,就可以进行U-Boot的烧写与调试了。对PPC 8xx系列的主板,可参考DULG文档中TQM8xx的配置文件进行相应的修改。下面,笔者以美国Embedded Planet公司的RPXlite DW板为例,给出在嵌入式Linux交叉开发环境下的BDI2000参考配置文件以作参考:

; bdiGDB configuration file for RPXlite DW or LITE_DW

; --------------------------------------------

[INIT]

; init core register

WSPR 149 0x2002000F ;DER : set debug enable register

; WSPR 149 0x2006000F ;DER : enable SYSIE for BDI flash program

WSPR 638 0xFA200000 ;IMMR : internal memory at 0xFA200000

WM32 0xFA200004 0xFFFFFF89 ;SYPCR

[TARGET]

CPUCLOCK 40000000 ;the CPU clock rate after processing the init list

BDIMODE AGENT ;the BDI working mode (LOADONLY | AGENT)

BREAKMODE HARD ;SOFT or HARD, HARD uses PPC hardware breakpoints

[HOST]

IP 173.60.120.5

FILE uImage.litedw

FORMAT BIN

LOAD MANUAL ;load code MANUAL or AUTO after reset

DEBUGPORT 2001

START 0x0100

[FLASH]

CHIPTYPE AM29BX8 ;;Flash type (AM29F | AM29BX8 | AM29BX16 | I28BX8 | I28BX16)

CHIPSIZE 0x400000 ;;The size of one flash chip in bytes

BUSWIDTH 32 ;The width of the flash memory bus in bits (8 | 16 | 32)

WORKSPACE 0xFA202000 ; RAM buffer for fast flash programming

FILE u-boot.bin ;The file to program

FORMAT BIN 0x00000000

ERASE 0x00000000 BLOCK

ERASE 0x00008000 BLOCK

ERASE 0x00010000 BLOCK

ERASE 0x00018000 BLOCK

[REGS]

DMM1 0xFA200000

FILE reg823.def

② U-Boot移植参考板。这是进行U-Boot移植首先要明确的。可以根据目标板上CPU、FLASH、SDRAM的情况,以尽可能相一致为原则,先找出一个与所移植目标板为同一个或同一系列处理器的U-Boot支持板为移植参考板。如RPXlite DW板可选择U-Boot源码中RPXlite板作为U-Boot移植参考板。对U-Boot移植新手,建议依照循序渐进的原则,目标板文件名暂时先用移植参考板的名称,在逐步熟悉U-Boot移植基础上,再考虑给目标板重新命名。在实际移植过程中,可用Linux命令查找移植参考板的特定代码,如
grep –r RPXlite ./ 可确定出在U-Boot中与RPXlite板有关的代码,依此对照目标板实际进行屏蔽或修改。同时应不局限于移植参考板中的代码,要广泛借鉴U-Boot 中已有的代码更好地实现一些具体的功能。

③ U-Boot烧写地址。不同目标板,对U-Boot在FLASH中存放地址要求不尽相同。事实上,这是由处理器中断复位向量来决定的,与主板硬件相关,对 MPC8xx主板来讲,就是由硬件配置字(HRCW)决定的。也就是说,U-Boot烧写具体位置是由硬件决定的,而不是程序设计来选择的。程序中相应
U-Boot起始地址必须与硬件所确定的硬件复位向量相吻合;如RPXlite DW板的中断复位向量设置为0x00000100。因此, U-Boot 的BIN镜像文件必须烧写到FLASH的起始位置。事实上,大多数的PPC系列的处理器中断复位向量是0x00000100和0xfff00100。这也是一般所说的高位启动和低位启动的BOOT LOADER所在位置。可通过修改U-Boot源码<目标板>.h头文件中CFG_MONITOR_BASE 和board/<目标板>/config.mk中的TEXT_BASE的设置来与硬件配置相对应。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: