您的位置:首页 > 其它

字符串匹配算法(KMP)

2014-05-23 13:09 302 查看
1、BF算法

BF算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串P的第一个字符进行匹配,若相等,则继续比较S的第二个字符和P的第二个字符;若不相等,则比较S的第二个字符和P的第一个字符,依次比较下去,直到得出最后的匹配结果。

举例说明:

S: ababcababa

P: ababa

  BF算法匹配的步骤如下

i=0 i=1 i=2
i=3 i=4

第一趟:ababcababa 第二趟:ababcababa 第三趟:ababcababa 第四趟:ababcababa
第五趟:ababcababa

ababa ababa
ababa ababa ababa

j=0 j=1 j=2 j=3 j=4(i和j回溯)

i=1 i=2 i=3 i=4 i=3

第六趟:ababcababa 第七趟:ababcababa 第八趟:ababcababa 第九趟:ababcababa
第十趟:ababcababa

ababa ababa ababa
ababa ababa

j=0 j=0 j=1 j=2(i和j回溯) j=0

i=4 i=5 i=6 i=7 i=8

第十一趟:ababcababa 第十二趟:ababcababa 第十三趟:ababcababa 第十四趟:ababcababa
第十五趟:ababcababa

ababa
ababa ababa ababa ababa

j=0 j=0 j=1 j=2 j=3

i=9

第十六趟:ababcababa

ababa

j=4(匹配成功)

代码实现:

int BFMatch(char *s,char *p)
{
int i,j;
i=0;
while(i<strlen(s))
{
j=0;
while(s[i]==p[j]&&j<strlen(p))
{
i++;
j++;
}
if(j==strlen(p))
return i-strlen(p);
i=i-j+1;                //指针i回溯
}
return -1;
}


其实在上面的匹配过程中,有很多比较是多余的。在第五趟匹配失败的时候,在第六趟,i可以保持不变,j值为2。因为在前面匹配的过程中,对于串S,已知s0s1s2s3=p0p1p2p3,又因为p0!=p1!,所以第六趟的匹配是多余的。又由于p0==p2,p1==p3,所以第七趟和第八趟的匹配也是多余的。在KMP算法中就省略了这些多余的匹配。

二.KMP算法

KMP算法之所以叫做KMP算法是因为这个算法是由三个人共同提出来的,就取三个人名字的首字母作为该算法的名字。其实KMP算法与BF算法的区别就在于KMP算法巧妙的消除了指针i的回溯问题,只需确定下次匹配j的位置即可,使得问题的复杂度由O(mn)下降到O(m+n)。

  在KMP算法中,为了确定在匹配不成功时,下次匹配时j的位置,引入了next[]数组,next[j]的值表示P[0...j-1]中最长后缀的长度等于相同字符序列的前缀。

  对于next[]数组的定义如下:

 1) next[j] = -1 j = 0

 2) next[j] = max(k): 0<k<j P[0...k-1]=P[j-k,j-1]

 3) next[j] = 0 其他

 如:

 P a b a b a

 j 0 1 2 3 4

next -1 0 0 1 2

 即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1]

 因此KMP算法的思想就是:在匹配过程称,若发生不匹配的情况,如果next[j]>=0,则目标串的指针i不变,将模式串的指针j移动到next[j]的位置继续进行匹配;若next[j]=-1,则将i右移1位,并将j置0,继续进行比较。

代码实现如下:
int KMPMatch(char *s,char *p)
{
int next[100];
int i,j;
i=0;
j=0;
getNext(p,next);
while(i<strlen(s))
{
if(j==-1||s[i]==p[j])
{
i++;
j++;
}
else
{
j=next[j];       //消除了指针i的回溯
}
if(j==strlen(p))
return i-strlen(p);
}
return -1;
}
因此KMP算法的关键在于求算next[]数组的值,即求算模式串每个位置处的最长后缀与前缀相同的长度, 而求算next[]数组的值有两种思路,第一种思路是用递推的思想去求算,还有一种就是直接去求解。

1.按照递推的思想:

根据定义next[0]=-1,假设next[j]=k, 即P[0...k-1]==P[j-k,j-1]

1)若P[j]==P[k],则有P[0..k]==P[j-k,j],很显然,next[j+1]=next[j]+1=k+1;

2)若P[j]!=P[k],则可以把其看做模式匹配的问题,即匹配失败的时候,k值如何移动,显然k=next[k]。

因此可以这样去实现:

void getNext(char *p,int *next)
{
int j,k;
next[0]=-1;
j=0;
k=-1;
while(j<strlen(p)-1)
{
if(k==-1||p[j]==p[k])    //匹配的情况下,p[j]==p[k]
{
j++;
k++;
next[j]=k;
}
else                   //p[j]!=p[k]
k=next[k];
}
}


2.直接求解方法

void getNext(char *p,int *next)
{
int i,j,temp;
for(i=0;i<strlen(p);i++)
{
if(i==0)
{
next[i]=-1;     //next[0]=-1
}
else if(i==1)
{
next[i]=0;      //next[1]=0
}
else
{
temp=i-1;
for(j=temp;j>0;j--)
{
if(equals(p,i,j))
{
next[i]=j;   //找到最大的k值
break;
}
}
if(j==0)
next[i]=0;
}
}
}

bool equals(char *p,int i,int j)     //判断p[0...j-1]与p[i-j...i-1]是否相等
{
int k=0;
int s=i-j;
for(;k<=j-1&&s<=i-1;k++,s++)
{
if(p[k]!=p[s])
return false;
}
return true;
}


3、改进KMP算法

KMP算法是可以被进一步优化的。
我们以一个例子来说明。譬如我们给的P字符串是“abcdaabcab”,经过KMP算法,应当得到“特征向量”如下表所示:
下标i
0
1
2
3
4
5
6
7
8
9
p(i)
a
b
c
d
a
a
b
c
a
b
next[i]
-1
0
0
0
0
1
1
2
3
1
但是,如果此时发现p(i) == p(k),那么应当将相应的next[i]的值更改为next[k]的值。经过优化后可以得到下面的表格:
下标i
0
1
2
3
4
5
6
7
8
9
p(i)
a
b
c
d
a
a
b
c
a
b
next[i]
-1
0
0
0
0
1
1
2
3
1
优化的next[i]
-1
0
0
0
-1
1
0
0
3
0
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: