您的位置:首页 > 其它

关于微分中值定理的专题讨论

2014-04-20 17:32 441 查看
$\bf命题:$设$f\left( x \right)$在$\left[ {0,1} \right]$上二次可微,且$f\left( 0 \right) = f\left( 1 \right) = f'\left( 0 \right) = f'\left( 1 \right) = 0$,则存在$\xi \in \left( {0,1} \right)$,使得$f''\left( \xi \right){\rm{ = }}f\left( \xi \right)$

1

$\bf命题:$设$f\left( x \right)$在$\left[ {0,1} \right]$上连续,在$\left( {0,1} \right)$上可微,且$f\left( 0 \right) = 0,f\left( 1 \right) = \frac{1}{2}$,则存在$\xi ,\eta \in \left( {0,1} \right)$,使得$f'\left( \xi \right){\rm{ + }}f'\left( \eta \right){\rm{ = }}\xi {\rm{ + }}\eta $

1

$\bf命题:$设$f(x)$在$[0,1]$上可导,且$f\left( 0 \right) = 0,f\left( 1 \right) = 1$,证明:存在$\xi,\eta \in(0,1)$,使得$\frac{1}{{f'\left( \xi \right)}} + \frac{1}{{f'\left( \eta \right)}} = 2$

$\bf命题:$设$f\left( x \right)$在$\left[ {a,b} \right]$上连续且在$(a,b)$上可微,若$f\left( a \right) = 0,f\left( x \right) \ne 0,\forall x \in \left( {a,b} \right)$,则对任意的自然数$m,n$,存在$\xi ,\eta \in \left( {a,b} \right)$,使得$\frac{{nf'\left( \xi \right)}}{{f\left( \xi \right)}} = \frac{{mf'\left( \eta \right)}}{{f\left( \eta \right)}}$

1

$\bf命题:$设设$f\left( x \right)$在$\left[ {0,1} \right]$上连续,在$(0,1)$上可微,且$f(0)=0,f(1)=1$,则存在不同的点$\xi ,\eta \in \left( {0,1} \right)$,使得$f'\left( \xi \right)f'\left( \eta \right) = 1$

1

$\bf命题:$设$f(x),g(x)$在$\left[ {a,b} \right]$上连续,在$(a,b)$内具有二阶导数且存在相等最大值,$f\left( a \right) = g\left( a \right),f\left( b \right) = g\left( b \right)$,证明:存在$\xi \in(a,b)$,使得$f''\left( \xi \right) = g''\left( \xi \right)$

$\bf命题:$设$f\left( x \right)$在$\left( {a, + \infty } \right)$可导且导函数有界,则存在常数$c,\xi $,使得当$x \ge \xi $时,有$f\left( x \right) < cx$

1

$\bf命题:$设$f(x)$在$\left[ {a,b} \right]$上二次可微,若存在$c \in \left( {a,b} \right)$,使得$f\left( c \right) > 0$,且$f\left( a \right) = f\left( b \right) = 0$,则存在$\xi \in \left( {a,b} \right)$,使得$f''\left( \xi \right) < 0$

1

$\bf命题:$$(1)$设$f\left( x \right)$在$\left( {a, + \infty } \right)$上可微,且$\lim \limits_{x \to \begin{array}{*{20}{c}}{{a^ + }}\end{array}} f\left( x \right) = \lim \limits_{x \to \begin{array}{*{20}{c}}{ + \infty }\end{array}} f\left( x \right)$,则存在$\xi \in \left( {a, + \infty } \right)$,使得$f'\left( \xi \right) = 0$

$(2)$若$f\left( x \right)$在$\left( {a, + \infty } \right)$上二次可微,则存在$\eta \in \left( {a, + \infty } \right)$,使得$f''\left( \eta \right) = 0$

1 2

$\bf命题:$设$f(x)$是$\left[ {a, + \infty } \right)$上有界的可微函数,且$\left| {f'\left( x \right)} \right|$单调,则$\lim \limits_{x \to \begin{array}{*{20}{c}}{ + \infty }\end{array}} xf'\left( x \right) = 0$

1

$\bf命题:$设$f(x)$在$[a,b]$上连续,在$(a,b)$上可微,且满足条件\[f\left( a \right)f\left( b \right) > 0,f\left( a \right)f\left( {\frac{{a + b}}{2}} \right) < 0\]证明:对每个实数$k$,存在$\xi \in \left( {a,b} \right)$,使得$f'\left( \xi \right) - kf\left( \xi \right) = 0$

1

$\bf命题:$设$f\left( x \right) \in {C^1}\left[ {a,b} \right]$,且存在$c \in \left( {a,b} \right)$,使得$f'\left( c \right) = 0$,则存在$\xi \in \left( {a,b} \right)$,使得$f'\left( \xi \right) = \frac{{f\left( \xi \right) - f\left( a \right)}}{{b - a}}$

1

$\bf命题:$设$f(x)$在$[a,b]$上可导,且$f'\left( a \right) = f'\left( b \right)$,则存在$\xi \in \left( {a,b} \right)$,使得$f'\left( \xi \right)\left( {\xi - a} \right) = f\left( \xi \right) - f\left( a \right)$

1

$\bf命题:$设$f(x),g(x)$为$[a,b]$上的正值连续函数,则存在$\xi \in (a,b)$,使得$\frac{{f\left( \xi \right)}}{{\int_a^\xi {f\left( x \right)dx} }} - \frac{{g\left( \xi \right)}}{{\int_\xi ^b {g\left( x \right)dx} }} = 1$

1

$\bf命题:$设$a>1$,函数$f:\left( {0, + \infty } \right) \to \left( {0, + \infty } \right)$可微,证明:存在趋于无穷的正数列${x_n}$,使得$f'\left( {{x_n}} \right) < f\left( {a{x_n}} \right),n = 1,2, \cdots $

1

$\bf命题:$设$f(x)$在$[-2,2]$上二阶可导,且$\left| {f\left( x \right)} \right| \leqslant 1\left( { - 2 \leqslant x \leqslant 2} \right)$,\[\frac{1}{2}{\left[ {f'\left( 0 \right)} \right]^2} + {f^3}\left( 0 \right) > \frac{3}{2}\]证明:存在${x_0} \in \left( { - 2,2} \right)$,使得$f''\left( {{x_0}} \right) + 3{f^2}\left( {{x_0}} \right) = 0$

1

$\bf命题:$设$f(x)$在$[-2,2]$上二阶可导,且$\left| {f\left( x \right)} \right| \leqslant 1$,${f^2}\left( 0 \right){\text{ + }}{\left( {f'\left( 0 \right)} \right)^2}{\text{ = }}4$,证明:存在$\xi \in \left( { - 2,2} \right)$,使得$f''\left( \xi \right) + f\left( \xi \right) = 0$

1

$\bf(03中科院五)$设$f(x)$在$[a,b]$上连续,在$(a,b)$内可导,且$f\left( a \right) = 0,f\left( x \right) > 0\left( {a < x < b} \right)$,证明:不存在常数$M>0$,使得$$0 \leqslant f'\left( x \right) \leqslant Mf\left( x \right),x \in \left( {a,b} \right]$$

$\bf(04华师三)$设$f(x)$在$[a,b]$上连续,在$(a,b)$内可导,则存在$\xi,\eta \in(a,b)$,使得$f'\left( \xi \right) = \frac{{{\eta ^2}f'\left( \eta \right)}}{{ab}}$

[b]附录[/b]

$\bf命题:$$\bf(Gronwall-Bellman不等式微分形式)$设$f(x)$在$\left[ {0, + \infty } \right)$上可微,$f(0)=0$,且存在$A>0$,使得\[\left| {f'\left( x \right)} \right| \le A\left| {f\left( x \right)} \right|,\forall x \in \left[ {0, + \infty } \right)\]证明:$f\left( x \right) \equiv 0$

1 2

$\bf命题:$设${f\left( x \right)}$在$\left[ {a,b} \right]$上连续,在$\left( {a,b} \right)$上二次可微,则存在$\xi \in \left( {a,b} \right)$,使得

\[f\left( a \right) + f\left( b \right) - 2f\left( {\frac{{a + b}}{2}} \right) = \frac{{{{\left( {b - a} \right)}^2}}}{4}f''\left( \xi \right)\]

方法一 方法二 方法三 方法四 方法五
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: