您的位置:首页 > 其它

关于函数列一致收敛的专题讨论

2014-04-17 22:36 375 查看
$\bf命题:$设$f\left( x \right) \in {C^1}\left( { - \infty , + \infty } \right)$,令\[{f_n}\left( x \right) = n\left[ {f\left( {x + \frac{1}{n}} \right) - f\left( x \right)} \right]\]

证明:对任意$x \in \left[ {a,b} \right] \subset \left( { - \infty , + \infty } \right)$,有${f_n}\left( x \right)$一致收敛于$f'\left( x \right)$

参考答案


$\bf命题:$设$f\left( x \right) \in C\left( { - \infty , + \infty } \right)$,令\[{f_n}\left( x \right) = \sum\limits_{k = 0}^{n - 1} {\frac{1}{n}} f\left( {x + \frac{k}{n}} \right)\]

证明:对任意$x \in \left[ {a,b} \right] \subset \left( { - \infty , + \infty } \right)$,有${f_n}\left( x \right)$一致收敛于$\int_0^1 {f\left( {x + t} \right)dt}$

参考答案


$\bf命题:$$\left( \bf{Dini定理} \right)$设函数列$\left\{ {{f_n}\left( x \right)} \right\}$的每一项及其极限函数$f\left( x \right)$

均在$x \in \left[ {a,b} \right]$上连续,且对每个$ x \in \left[ {a,b} \right]$有$\left\{ {{f_n}\left( x \right)} \right\}$为单调数列,则函数列$\left\{ {{f_n}\left( x \right)} \right\}$在$\left[ {a,b} \right]$上一致收敛于${f\left( x \right)}$

方法一

$\bf命题:$
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: