您的位置:首页 > 运维架构 > 网站架构

Linux设备模型之tty驱动架构分析

2014-04-12 18:17 726 查看
一:前言

Tty这个名称源于电传打字节的简称。在linux表示各种终端。终端通常都跟硬件相对应。比如对应于输入设备键盘鼠标。输出设备显示器的控制终端和串口终端.也有对应于不存在设备的pty驱动。在如此众多的终端模型之中,linux是怎么将它们统一建模的呢?这就是我们今天要讨论的问题.

二:tty驱动概貌

Tty架构如下所示:


screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL Mouse wheel to zoom in/out';}" onmouseover="if(this.width>screen.width*0.7)
{this.resized=true; this.width=screen.width*0.7; this.style.cursor='hand'; this.alt='Click here to open new window\nCTRL Mouse wheel to zoom in/out';}" onclick="if(!this.resized) {return true;} else {window.open('http://blogimg.chinaunix.net/blog/upfile2/080725162000.jpg');}"
onmousewheel="return imgzoom(this);" alt="" />

如上图所示,用户空间主要是通过设备文件同tty_core交互.tty_core根据用空间操作的类型再选择跟line discipline和tty_driver交互.例如设置硬件的ioctl指令就直接交给tty_driver处理。Read和write操作就会交给line discipline处理.

Line discipline是线路规程的意思。正如它的名字一样,它表示的是这条终端”线程”的输入与输出规范设置.主要用来进行输入/输出数据的预处理。处理之后。就会将数据交给tty_driver

Tty_driver就是终端对应的驱动了。它将字符转换成终端可以理解的字串.将其传给终端设备。

值得注意的是,这个架构没有为tty_drivero提供read操作。也就是说tty_core 和line discipline都没有办法从tty_driver里直接读终端信息。这是因为tty_driver对就的hardware并不一定是输入数据和输出数据的共同负载者。例如控制终端,输出设备是显示器。输入设备是键盘。基于这样的原理。在line discipline中有一个输入缓存区。并提供了一个名叫receive_buf()的接口函数。对应的终端设备只要调用line discipine的receiver_buf函数,将数据写入到输入缓存区就可以了。

如果一个设备同时是输入设备又是输出设备。那在设备的中断处理中调用receive_buf()将数据写入即可.

三:tty驱动接口分析

具体的tty驱动设计可以参考LDD3。这里只对它的接口实现做一个分析.tty driver的所有操作都包含在tty_driver中。内核即供了一个名叫alloc_tty_driver()来分配这个tty_driver。当然我们也可以在自己的驱动中将它定义成一个静态的结构。对tty_driver进行一些必要的初始化之后,调用tty_register_driver()将其注册.

alloc_tty_driver()接口代码如下所示:

struct tty_driver *alloc_tty_driver(int lines)

{

struct tty_driver *driver;

driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);

if (driver) {

driver->magic = TTY_DRIVER_MAGIC;

driver->num = lines;

/* later we'll move allocation of tables here */

}

return driver;

}

这个函数只有一个参数。这个参数的含义为line的个数。也即次设备号的个数。注意每个设备文件都会对应一个line.

在这个接口里为tty_driver分配内存,然后将driver->mage.driver->num初始化之后就返回了.

tty_register_driver()用来注册一个tty_driver。代码如下:

int tty_register_driver(struct tty_driver *driver)

{

int error;

int i;

dev_t dev;

void **p = NULL;

//TTY_DRIVER_INSTALLED:已安装的

if (driver->flags & TTY_DRIVER_INSTALLED)

return 0;

//TTY_DRIVER_DEVPTS_MEM:使用devpts进行动态内存映射

if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {

p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);

if (!p)

return -ENOMEM;

}

//注册字符设备号

//如果没有指定driver->major

if (!driver->major) {

error = alloc_chrdev_region(&dev, driver->minor_start,

driver->num, driver->name);

if (!error) {

driver->major = MAJOR(dev);

driver->minor_start = MINOR(dev);

}

} else {

dev = MKDEV(driver->major, driver->minor_start);

error = register_chrdev_region(dev, driver->num, driver->name);

}

if (error

kfree(p);

return error;

}

if (p) {

driver->ttys = (struct tty_struct **)p;

driver->termios = (struct ktermios **)(p driver->num);

driver->termios_locked = (struct ktermios **)

(p driver->num * 2);

} else {

driver->ttys = NULL;

driver->termios = NULL;

driver->termios_locked = NULL;

}

//注册字符设备

cdev_init(&driver->cdev, &tty_fops);

driver->cdev.owner = driver->owner;

error = cdev_add(&driver->cdev, dev, driver->num);

if (error) {

unregister_chrdev_region(dev, driver->num);

driver->ttys = NULL;

driver->termios = driver->termios_locked = NULL;

kfree(p);

return error;

}

//指定默认的put_char

if (!driver->put_char)

driver->put_char = tty_default_put_char;

mutex_lock(&tty_mutex);

list_add(&driver->tty_drivers, &tty_drivers);

mutex_unlock(&tty_mutex);

//如果没有指定TTY_DRIVER_DYNAMIC_DEV.即动态设备管理

if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {

for (i = 0; i num; i )

tty_register_device(driver, i, NULL);

}

proc_tty_register_driver(driver);

return 0;

}

这个函数操作比较简单。就是为tty_driver创建字符设备。然后将字符设备的操作集指定为tty_fops.并且将tty_driver挂载到tty_drivers链表中.其实这个链表的作用跟我们之前分析的input子系统中的input_dev[ ]数组类似。都是以设备号为关键字找到对应的driver.

特别的。如果没有定义TTY_DRIVER_DYNAMIC_DEV.还会在sysfs中创建一个类设备.这样主要是为了udev管理设备.

以流程图的方式将上述操作表示如下:


screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL Mouse wheel to zoom in/out';}" onmouseover="if(this.width>screen.width*0.7)
{this.resized=true; this.width=screen.width*0.7; this.style.cursor='hand'; this.alt='Click here to open new window\nCTRL Mouse wheel to zoom in/out';}" onclick="if(!this.resized) {return true;} else {window.open('http://blogimg.chinaunix.net/blog/upfile2/080725162052.jpg');}"
onmousewheel="return imgzoom(this);" alt="" />

四:设备文件的操作

设备文件的操作是本节分析的重点。它的主要操作是将各项操作对应到ldsic或者是tty_driver.

4.1:打开tty设备的操作

从注册的过程可以看到,所有的操作都会对应到tty_fops中。Open操作对应的操作接口是tty_open()。代码如下:

static int tty_open(struct inode *inode, struct file *filp)

{

struct tty_struct *tty;

int noctty, retval;

struct tty_driver *driver;

int index;

dev_t device = inode->i_rdev;

unsigned short saved_flags = filp->f_flags;

nonseekable_open(inode, filp);

retry_open:

//O_NOCTTY 如果路径名指向终端设备,不要把这个设备用作控制终端

//noctty:需不需要更改当前进程的控制终端

noctty = filp->f_flags & O_NOCTTY;

index = -1;

retval = 0;

mutex_lock(&tty_mutex);

//设备号(5,0) 即/dev/tty.表示当前进程的控制终端

if (device == MKDEV(TTYAUX_MAJOR, 0)) {

tty = get_current_tty();

//如果当前进程的控制终端不存在,退出

if (!tty) {

mutex_unlock(&tty_mutex);

return -ENXIO;

}

//取得当前进程的tty_driver

driver = tty->driver;

index = tty->index;

filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */

/* noctty = 1; */

goto got_driver;

}

#ifdef CONFIG_VT

//设备号(4,0).即/dev/tty0:表示当前的控制台

if (device == MKDEV(TTY_MAJOR, 0)) {

extern struct tty_driver *console_driver;

driver = console_driver;

//fg_console: 表示当前的控制台

index = fg_console;

noctty = 1;

goto got_driver;

}

#endif

//设备号(5,1).即/dev/console.表示外接的控制台. 通过regesit_console()

if (device == MKDEV(TTYAUX_MAJOR, 1)) {

driver = console_device(&index);

if (driver) {

/* Don't let /dev/console block */

filp->f_flags |= O_NONBLOCK;

noctty = 1;

goto got_driver;

}

mutex_unlock(&tty_mutex);

return -ENODEV;

}

//以文件的设备号为关键字,到tty_drivers中搜索所注册的driver

driver = get_tty_driver(device, &index);

if (!driver) {

mutex_unlock(&tty_mutex);

return -ENODEV;

}

got_driver:

//index表示它的次设备号

retval = init_dev(driver, index, &tty);

mutex_unlock(&tty_mutex);

if (retval)

return retval;

filp->private_data = tty;

file_move(filp, &tty->tty_files);

check_tty_count(tty, "tty_open");

if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&

tty->driver->subtype == PTY_TYPE_MASTER)

noctty = 1;

#ifdef TTY_DEBUG_HANGUP

printk(KERN_DEBUG "opening %s...", tty->name);

#endif

if (!retval) {

if (tty->driver->open)

retval = tty->driver->open(tty, filp);

else

retval = -ENODEV;

}

filp->f_flags = saved_flags;

if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&

!capable(CAP_SYS_ADMIN))

retval = -EBUSY;

if (retval) {

#ifdef TTY_DEBUG_HANGUP

printk(KERN_DEBUG "error %d in opening %s...", retval,

tty->name);

#endif

release_dev(filp);

if (retval != -ERESTARTSYS)

return retval;

if (signal_pending(current))

return retval;

schedule();

/*

* Need to reset f_op in case a hangup happened.

*/

if (filp->f_op == &hung_up_tty_fops)

filp->f_op = &tty_fops;

goto retry_open;

}

mutex_lock(&tty_mutex);

spin_lock_irq(¤t->sighand->siglock);

//设置当前进程的终端

if (!noctty &&

current->signal->leader &&

!current->signal->tty &&

tty->session == NULL)

__proc_set_tty(current, tty);

spin_unlock_irq(¤t->sighand->siglock);

mutex_unlock(&tty_mutex);

tty_audit_opening();

return 0;

}

注意在这里有个容易忽略的操作:init_dev()。

Init_dev() -à initialize_tty_struct() à tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));

看一下tty_ldisc_assign(tty, tty_ldisc_get(N_TTY))的操作:

Tty_ldisc_get():

struct tty_ldisc *tty_ldisc_get(int disc)

{

unsigned long flags;

struct tty_ldisc *ld;

if (disc = NR_LDISCS)

return NULL;

spin_lock_irqsave(&tty_ldisc_lock, flags);

ld = &tty_ldiscs[disc];

/* Check the entry is defined */

if (ld->flags & LDISC_FLAG_DEFINED) {

/* If the module is being unloaded we can't use it */

if (!try_module_get(ld->owner))

ld = NULL;

else /* lock it */

ld->refcount ;

} else

ld = NULL;

spin_unlock_irqrestore(&tty_ldisc_lock, flags);

return ld;

}

这个函数的操作为到tty_ldiscs[ ]找到对应项.这个数组中的成员是调用tty_register_ldisc()将其设置进去的.

tty_ldisc_assign操作如下:

static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)

{

tty->ldisc = *ld;

tty->ldisc.refcount = 0;

}

即将取出来的idisc作为tty->ldisc字段.

在这段代码中涉及到了tty_driver,tty_struct, struct tty_ldisc.这三者之间的关系用下图表示如下:


screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL Mouse wheel to zoom in/out';}" onmouseover="if(this.width>screen.width*0.7)
{this.resized=true; this.width=screen.width*0.7; this.style.cursor='hand'; this.alt='Click here to open new window\nCTRL Mouse wheel to zoom in/out';}" onclick="if(!this.resized) {return true;} else {window.open('http://blogimg.chinaunix.net/blog/upfile2/080725162158.jpg');}"
onmousewheel="return imgzoom(this);" alt="" />

在这里,为tty_struct的ldisc是默认指定为tty_ldiscs[N_TTY].该ldisc对应的是控制终端的线路规范。可以在用空间用带TIOCSETD的ioctl调用进行更改.

将上述open用流程图的方式表示如下:


screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL Mouse wheel to zoom in/out';}" onmouseover="if(this.width>screen.width*0.7)
{this.resized=true; this.width=screen.width*0.7; this.style.cursor='hand'; this.alt='Click here to open new window\nCTRL Mouse wheel to zoom in/out';}" onclick="if(!this.resized) {return true;} else {window.open('http://blogimg.chinaunix.net/blog/upfile2/080725162242.jpg');}"
onmousewheel="return imgzoom(this);" alt="" />

4.2:设备文件的write操作

设备文件的write操作对应tty_fops->write即tty_write().代码如下:

static ssize_t tty_write(struct file *file, const char __user *buf,

size_t count, loff_t *ppos)

{

struct tty_struct *tty;

struct inode *inode = file->f_path.dentry->d_inode;

ssize_t ret;

struct tty_ldisc *ld;

tty = (struct tty_struct *)file->private_data;

if (tty_paranoia_check(tty, inode, "tty_write"))

return -EIO;

if (!tty || !tty->driver->write ||

(test_bit(TTY_IO_ERROR, &tty->flags)))

return -EIO;

ld = tty_ldisc_ref_wait(tty);

if (!ld->write)

ret = -EIO;

else

ret = do_tty_write(ld->write, tty, file, buf, count);

tty_ldisc_deref(ld);

return ret;

}

在open的过程中,将tty_struct存放在file的私有区。在write中,从file的私有区中就可以取到要操作的tty_struct.

如果tty_driver中没有write.如果tty有错误都会有效性判断失败返回。如果一切正常,递增ldsic的引用计数。将用do_tty_wirte()再行写操作。写完之后,再递减ldsic的引用计数.

Do_tty_write代码分段分析如下:

static inline ssize_t do_tty_write(

ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),

struct tty_struct *tty,

struct file *file,

const char __user *buf,

size_t count)

{

ssize_t ret, written = 0;

unsigned int chunk;

ret = tty_write_lock(tty, file->f_flags & O_NDELAY);

if (ret

return ret;

/*

* We chunk up writes into a temporary buffer. This

* simplifies low-level drivers immensely, since they

* don't have locking issues and user mode accesses.

*

* But if TTY_NO_WRITE_SPLIT is set, we should use a

* big chunk-size..

*

* The default chunk-size is 2kB, because the NTTY

* layer has problems with bigger chunks. It will

* claim to be able to handle more characters than

* it actually does.

*

* FIXME: This can probably go away now except that 64K chunks

* are too likely to fail unless switched to vmalloc...

*/

chunk = 2048;

if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))

chunk = 65536;

if (count

chunk = count;

/* write_buf/write_cnt is protected by the atomic_write_lock mutex */

if (tty->write_cnt

unsigned char *buf;

if (chunk

chunk = 1024;

buf = kmalloc(chunk, GFP_KERNEL);

if (!buf) {

ret = -ENOMEM;

goto out;

}

kfree(tty->write_buf);

tty->write_cnt = chunk;

tty->write_buf = buf;

}

默认一次写数据的大小为2K.如果设置了TTY_NO_WRITE_SPLIT.则将一次写的数据量扩大为65536.

Tty->write_buf是写操作的临时缓存区。即将用户空的数据暂时存放到这里

Tty->write_cnt是临时缓存区的大小。

在这里,必须要根据一次写的数据量对这个临时缓存区做调整

/* Do the write .. */

for (;;) {

size_t size = count;

if (size > chunk)

size = chunk;

ret = -EFAULT;

if (copy_from_user(tty->write_buf, buf, size))

break;

lock_kernel();

ret = write(tty, file, tty->write_buf, size);

unlock_kernel();

if (ret

break;

written = ret;

buf = ret;

count -= ret;

if (!count)

break;

ret = -ERESTARTSYS;

if (signal_pending(current))

break;

cond_resched();

}

if (written) {

struct inode *inode = file->f_path.dentry->d_inode;

inode->i_mtime = current_fs_time(inode->i_sb);

ret = written;

}

out:

tty_write_unlock(tty);

return ret;

}

后面的操作就比较简单了。先将用户空间的数据copy到临时缓存区,然后再调用ldisc->write()完成这次写操作.最后再更新设备结点的时间戳.

Write操作的流程图如下示:


screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL Mouse wheel to zoom in/out';}" onmouseover="if(this.width>screen.width*0.7)
{this.resized=true; this.width=screen.width*0.7; this.style.cursor='hand'; this.alt='Click here to open new window\nCTRL Mouse wheel to zoom in/out';}" onclick="if(!this.resized) {return true;} else {window.open('http://blogimg.chinaunix.net/blog/upfile2/080725162311.jpg');}"
onmousewheel="return imgzoom(this);" alt="" />

在这里,我们只看到将数据写放到了ldisc->write().没有看到与tty_driver相关的部份。实际上在ldisc中对写入的数据做预处理过后,还是会调用tty_driver->write()将其写入硬件.

4.3:设备文件的read操作

static ssize_t tty_read(struct file *file, char __user *buf, size_t count,

loff_t *ppos)

{

int i;

struct tty_struct *tty;

struct inode *inode;

struct tty_ldisc *ld;

tty = (struct tty_struct *)file->private_data;

inode = file->f_path.dentry->d_inode;

if (tty_paranoia_check(tty, inode, "tty_read"))

return -EIO;

if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))

return -EIO;

/* We want to wait for the line discipline to sort out in this

situation */

ld = tty_ldisc_ref_wait(tty);

lock_kernel();

if (ld->read)

i = (ld->read)(tty, file, buf, count);

else

i = -EIO;

tty_ldisc_deref(ld);

unlock_kernel();

if (i > 0)

inode->i_atime = current_fs_time(inode->i_sb);

return i;

}

这个read操作就更简单。直接调用ldsic->read()完成工作

流程图如下:


screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL Mouse wheel to zoom in/out';}" onmouseover="if(this.width>screen.width*0.7)
{this.resized=true; this.width=screen.width*0.7; this.style.cursor='hand'; this.alt='Click here to open new window\nCTRL Mouse wheel to zoom in/out';}" onclick="if(!this.resized) {return true;} else {window.open('http://blogimg.chinaunix.net/blog/upfile2/080725162335.jpg');}"
onmousewheel="return imgzoom(this);" alt="" />

五:小结

在tty设备文件的操作中。Open操作会进行一系统初始化。然后调用ldsic->open tty_driver->open。在write和read调用中只tty_core只会用到ldisc->wirte/ldisc->read.除了上面分析的几个操作之外,还有一个ioctl操作,以及它封装的几个termios。这些ioctl类的操作会直接和tty_driver相关联.

在这一节里,只对tty的构造做一个分析,具体ldisc的操作我们之后以控制终端为例进行分析.
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: