您的位置:首页 > 其它

IAR中cortex-m4启动流程分析

2014-04-11 19:28 609 查看
软件环境:windows7旗舰版,IAR V6105(EWARM-EV-WEB-6105)

ARM芯片:飞思卡尔K60N512VMD100 (cortex-m4核心)

示例程序:飞思卡尔官方的 KINETIS512_SC

======================

最近分析了一下飞思卡尔官方提供的k60系列demo程序在IAR上的启动流程,现写一下笔记,以备以后参考。先看一下K60N512VMD100内部存储器的分布情况,飞思卡尔K60N512VMD100有512K的flash和128k的SRAM.其中:

Flash地址空间:

0x00000000--0x00080000,共512k

SRAM地址空间:

SRAM1 0x1FFF0000--0x20000000 64k

SRAM2 0x20000000--0x20010000 64k

总共的SRAM大小是128k

我要在RAM中调试代码,下面以代码的执行过程为顺序分析一下启动流程。

首先看一下源文件中提供的128KB_Ram.icf文件。*.icf文件是IAR中的分散描述文件,相当于ADS中的*.src文件或keil中的*.sct文件或GNU中的*.lds链接脚本文件。

这个文件中前面部分是各个变量的定义,关键看后面部分:

/*128KB_Ram.icf后面部分*/

***********

place at address mem:__ICFEDIT_intvec_start__ { readonly section .intvec };

place at address mem:__code_start__ { readonly section .noinit };

place in RAM_region { readonly, block CodeRelocate };

place in RAM_region { readwrite, block CodeRelocateRam,

block CSTACK, block HEAP };

************

①place at address mem:__ICFEDIT_intvec_start__ { readonly section .intvec }

这段代码表示要把.intvec代码段中的只读部分放在存储空间(mem,前面已定义的名称)中__ICFEDIT_intvec_start__ 地址上,前面部分已经定义__ICFEDIT_intvec_start__=0x1fff0000,是SRAM的起始地址。也就是先把向量表放到内存中的最前面。 .intvec 这个段是在vectors.c文件中出现的,

/*vectors.c片段*/

typedef void (*vector_entry)(void);

#pragma location = ".intvec"

const vector_entry __vector_table[] = //@ ".intvec" =

{

VECTOR_000, /* Initial SP */

VECTOR_001, /* Initial PC */

VECTOR_002,

VECTOR_003,

......(中间省略)

VECTOR_254,

VECTOR_255,

CONFIG_1,

CONFIG_2,

CONFIG_3,

CONFIG_4,

};

从源文件中可以看到这里定义了一个向量表__vector_table(前面的const 很重要不能省,这样才能保证向量表是只读的),向量表中的每一项都是一个指向函数的指针,这里总共有256+4=260个指针,所以占据空间为260*4=1040=0x410.

所以SRAM空间的前0x410的空间已经被向量表占据。即占据了0x1fff0000--0x1fff0410.

②place at address mem:__code_start__ { readonly section .noinit }

这段代码表示要把 .noinit段中的只读部分放到地址空间 __code_start__ 开始的地址上,前面有定义 __code_start__= 0x1fff0410 ,也就是把 .noinit段放到0x1fff0410开始的地址上。所以在内存中代码就连续了,先是向量表,接着的是.noinitd 段。

.noinit 段在crt0.s汇编文件中出现:

SECTION .noinit : CODE

EXPORT __startup

__startup

MOV r0,#0 ; Initialize the GPRs

MOV r1,#0

MOV r2,#0

MOV r3,#0

MOV r4,#0

MOV r5,#0

MOV r6,#0

MOV r7,#0

MOV r8,#0

MOV r9,#0

MOV r10,#0

MOV r11,#0

MOV r12,#0

CPSIE i ; Unmask interrupts

import start

BL start ; call the C code

__done

B __done

END

这段代码算是芯片复位后执行的第一段代码(如果没有其他异常的话)。作为一个通常的规则,推荐先把通用寄存器(R0-R12)清零。然后是使能中断,跳转到start标号(或函数)处继续执行。

========================

在start.c文件中找到了start函数:

/*start.c片段*/

void start(void)

{

/* Disable the watchdog timer */

wdog_disable();

/* Copy any vector or data sections that need to be in RAM */

common_startup();

/* Perform processor initialization */

sysinit();

printf("\n\n");

/* Determine the last cause(s) of reset */

if (MC_SRSH & MC_SRSH_SW_MASK)

printf("Software Reset\n");

if (MC_SRSH & MC_SRSH_LOCKUP_MASK)

printf("Core Lockup Event Reset\n");

if (MC_SRSH & MC_SRSH_JTAG_MASK)

printf("JTAG Reset\n");

if (MC_SRSL & MC_SRSL_POR_MASK)

printf("Power-on Reset\n");

if (MC_SRSL & MC_SRSL_PIN_MASK)

printf("External Pin Reset\n");

if (MC_SRSL & MC_SRSL_COP_MASK)

printf("Watchdog(COP) Reset\n");

if (MC_SRSL & MC_SRSL_LOC_MASK)

printf("Loss of Clock Reset\n");

if (MC_SRSL & MC_SRSL_LVD_MASK)

printf("Low-voltage Detect Reset\n");

if (MC_SRSL & MC_SRSL_WAKEUP_MASK)

printf("LLWU Reset\n");

/* Determine specific Kinetis device and revision */

cpu_identify();

/* Jump to main process */

main();

/* No actions to perform after this so wait forever */

while(1);

}

start函数中,首先执行 wdog_disable()函数来禁用看门狗,然后调用 common_startup()函数初始化RAM(复制向量表、清零.bss段等,为C语言运行环境做准备),接着执行sysinit()函数初始化芯片(时钟、用到的外设等)。下面依次分析这3个函数。

①wdog_disable()

对系统的设定无非是对各个寄存器值的修改。wdog_disable()函数在wdog.c文件中

/*wdog.c片段*/

void wdog_disable(void)

{

/* First unlock the watchdog so that we can write to registers */

wdog_unlock();

/* Clear the WDOGEN bit to disable the watchdog */

WDOG_STCTRLH &= ~WDOG_STCTRLH_WDOGEN_MASK;

}

void wdog_unlock(void)

{

/* NOTE: DO NOT SINGLE STEP THROUGH
THIS */

/* There are timing requirements for the execution of the unlock. If

* you single step through the code you will cause the CPU to reset.

*/

/* This sequence must execute within 20 clock cycles, so disable

* interrupts will keep the code atomic and ensure the timing.

*/

DisableInterrupts;

/* Write 0xC520 to the unlock register */

WDOG_UNLOCK = 0xC520;

/* Followed by 0xD928 to complete the unlock */

WDOG_UNLOCK = 0xD928;

/* Re-enable interrupts now that we are done */

EnableInterrupts;

}

禁用看门狗流程很简单:先是解锁寄存器,然后更改看门狗寄存器里面的值来禁用看门狗。解锁看门狗寄存器:向解锁寄存器里连续写入0xC520和0xD928,两次写入的时间必须小于20个时钟周期。所以在解锁过程中不能单步运行,期间也不能被中断打断,解锁函数是 wdog_unlock()。上面DisableInterrupts和EnableInterrupts已经在arm_cm4.h中定义过:

#define DisableInterrupts asm(" CPSID i");

#define EnableInterrupts asm(" CPSIE i");

解锁看门狗寄存器后,向看门狗寄存器里写入适当的值就可以禁用看门狗了。

也就是把WDOG_STCTRLH 寄存器(地址是0x40052000)的第0位置0.

②common_startup

初始化RAM(复制向量表、清零.bss段等,为C语言运行环境做准备)。

1 /* File: startup.c */

2 #include "common.h"

3 #pragma section = ".data"

4 #pragma section = ".data_init"

5 #pragma section = ".bss"

6 #pragma section = "CodeRelocate"

7 #pragma section = "CodeRelocateRam"

8 /********************************************************************/

9 void

10 common_startup(void)

11 {

12 /* Declare a counter we'll use in all of the copy loops */

13 uint32 n;

14 /* Declare pointers for various data sections. These pointers

15 * are initialized using values pulled in from the linker file

16 */

17 uint8 * data_ram, * data_rom, * data_rom_end;

18 uint8 * bss_start, * bss_end;

19 /* Addresses for VECTOR_TABLE and VECTOR_RAM come from the linker file */

20 extern uint32 __VECTOR_TABLE[];

21 extern uint32 __VECTOR_RAM[];

22 /* Copy the vector table to RAM */

23 if (__VECTOR_RAM != __VECTOR_TABLE)

24 {

25 for (n = 0; n < 0x410; n++)

26 __VECTOR_RAM[n] = __VECTOR_TABLE[n];

27 }

28 /* Point the VTOR to the new copy of the vector table */

29 write_vtor((uint32)__VECTOR_RAM);

30 /* Get the addresses for the .data section (initialized
data section) */

31 data_ram = __section_begin(".data");

32 data_rom = __section_begin(".data_init");

33 data_rom_end = __section_end(".data_init");

34 n = data_rom_end - data_rom;

35 /* Copy initialized data from ROM to RAM */

36 while (n--)

37 *data_ram++ = *data_rom++;

38 /* Get the addresses for the .bss section (zero-initialized
data) */

39 bss_start = __section_begin(".bss");

40 bss_end = __section_end(".bss");

41 /* Clear the zero-initialized data section */

42 n = bss_end - bss_start;

43 while(n--)

44 *bss_start++ = 0;

45 /* Get addresses for any code sections that need to be
copied from ROM to RAM.

46 * The IAR tools have a predefined keyword that can be used to mark individual

47 * functions for execution from RAM. Add "__ramfunc" before the return type in

48 * the function prototype for any routines you need to execute from RAM instead

49 * of ROM. ex: __ramfunc void foo(void);

50 */

51 uint8* code_relocate_ram = __section_begin("CodeRelocateRam");

52 uint8* code_relocate = __section_begin("CodeRelocate");

53 uint8* code_relocate_end = __section_end("CodeRelocate");

54 /* Copy functions from ROM to RAM */

55 n = code_relocate_end - code_relocate;

56 while (n--)

57 *code_relocate_ram++ = *code_relocate++;

58 }

在IAR中, #pragma section="NAME" 用来在C语言中指定一个名称是NAME的段,align指定对齐方式。指定的段可以被段操作符来引用,段操作符包括
__section_begin, __section_end, 和 __section_size. 个人理解.date、.date_init和.bss应该是IAR中保留的段名称,.date代表数据段中的常量,.date_init代表数据段中已初始化的变量,.bss代表未初始化的变量(zero)。

上面代码中,先是指定了5个不同名称的段(前3个是保留段名称,代表这些段是从这里开始的),CodeRelocate和CodeRelocateRam是在*.icf文件中定义的块(block):

define block CodeRelocate { section .textrw_init }; define block CodeRelocateRam { section .textrw };

quote:

The _

_ramfunc keyword makes a function execute in RAM. Two code

sections will be created: one for the RAM execution (.textrw), and one for the ROM initialization (.textrw_init).

外部变量引用

extern uint32 __VECTOR_TABLE[]; extern uint32 __VECTOR_RAM[];

来自IAR的链接文件(.icf),在.icf文件中已经定义了变量 __VECTOR_TABLE 和 __VECTOR_RAM 其值都是0x1fff0000."Copy the vector table to RAM"这段代码进行判断,如果向量表不在RAM中,则把向量表拷贝到RAM开始的地址上,这里由于在RAM中调试,代码是直接下载到RAM中的,所以不用拷贝。

向量表已经在RAM中了,接下来要重定向向量表,以便在发生异常时到RAM中取得异常入口地址(默认情况下是在0x0取)。 write_vtor((uint32)__VECTOR_RAM) 这个函数用来写向量表偏移寄存器(VTOR,地址0xE000_ED08),这里写入的是RAM起始地址0x1FFF0000。注意这个地址是有要求的,并不是所有地址都能作为向量表起始地址,0x1FFF0000满足要求(这个要求就是:必须先求出系统中共有多少个向量,再把这个数字向上增大到是 2 的整次幂,而起始地址必须对齐到后者的边界上。例如,如果一共有
32 个中断,则共有 32+16(系统异常)=48个向量,向上增大到 2的整次幂后值为 64,因此地址地址必须能被 64*4=256整除,从而合法的起始地址可以是:0x0,0x100,0x200 等----参见ARM Contex-M3权威指南)。另外,如果向量表在RAM区(相对于code区),需把bit[29]置位,这里0x1FFF0000也满足要求。

后面的代码是拷贝数据到RAM中,搭建好C语言运行环境。

上次写了飞思卡尔官方给出的demo程序的启动流程的前面部分:

在存储器最前面放置好向量表-->把通用寄存器清零-->开中断-->跳转到start函数继续执行初始化。在start函数中,顺次执行三个函数:禁用看门狗-->初始化C语言环境(向量表重定向、拷贝数据段到RAM、清零bss段等)-->系统外设初始化。
③系统外设初始化函数 sysinit()

#include "common.h"

#include "sysinit.h"

#include "uart.h"

/********************************************************************/

/* Actual system clock frequency */

int core_clk_khz;

int core_clk_mhz;

int periph_clk_khz;

/********************************************************************/

void sysinit (void)

{

/*

* Enable all of the port clocks. These
have to be enabled to configure

* pin muxing options, so
most code will need all of these on anyway.

*/

SIM_SCGC5 |= (SIM_SCGC5_PORTA_MASK

| SIM_SCGC5_PORTB_MASK

| SIM_SCGC5_PORTC_MASK

| SIM_SCGC5_PORTD_MASK

| SIM_SCGC5_PORTE_MASK );

/* Ramp up the system clock */

core_clk_mhz = pll_init(CORE_CLK_MHZ, REF_CLK);

/*

* Use the value obtained from the pll_init function to define
variables

* for the core clock in kHz and also
the peripheral clock. These

* variables can be used by other functions that need awareness of the

* system frequency.

*/

core_clk_khz = core_clk_mhz * 1000;

periph_clk_khz = core_clk_khz / (((SIM_CLKDIV1 & SIM_CLKDIV1_OUTDIV2_MASK) >> 24)+ 1);

/* For debugging
purposes, enable the trace clock and/or FB_CLK
so that

* we'll be able to monitor
clocks and know the PLL is at the frequency

* that we expect.

*/

trace_clk_init();

fb_clk_init();

/* Enable the pins for the
selected UART */

if (TERM_PORT == UART0_BASE_PTR)

{

/* Enable the UART0_TXD function on PTD6 */

PORTD_PCR6 = PORT_PCR_MUX(0x3); // UART is alt3 function for this
pin

/* Enable the UART0_RXD function on PTD7 */

PORTD_PCR7 = PORT_PCR_MUX(0x3); // UART is alt3 function for this
pin

}

if (TERM_PORT == UART1_BASE_PTR)

{

/* Enable the UART1_TXD function on PTC4 */

PORTC_PCR4 = PORT_PCR_MUX(0x3); // UART is alt3 function for this
pin

/* Enable the UART1_RXD function on PTC3 */

PORTC_PCR3 = PORT_PCR_MUX(0x3); // UART is alt3 function for this
pin

}

if (TERM_PORT == UART2_BASE_PTR)

{

/* Enable the UART2_TXD function on PTD3 */

PORTD_PCR3 = PORT_PCR_MUX(0x3); // UART is alt3 function for this
pin

/* Enable the UART2_RXD function on PTD2 */

PORTD_PCR2 = PORT_PCR_MUX(0x3); // UART is alt3 function for this
pin

}

if (TERM_PORT == UART3_BASE_PTR)

{

/* Enable the UART3_TXD function on PTC17 */

PORTC_PCR17 = PORT_PCR_MUX(0x3); // UART is alt3 function for this
pin

/* Enable the UART3_RXD function on PTC16 */

PORTC_PCR16 = PORT_PCR_MUX(0x3); // UART is alt3 function for this
pin

}

if (TERM_PORT == UART4_BASE_PTR)

{

/* Enable the UART3_TXD function on PTC17 */

PORTE_PCR24 = PORT_PCR_MUX(0x3); // UART is alt3 function for this
pin

/* Enable the UART3_RXD function on PTC16 */

PORTE_PCR25 = PORT_PCR_MUX(0x3); // UART is alt3 function for this
pin

}

if (TERM_PORT == UART5_BASE_PTR)

{

/* Enable the UART3_TXD function on PTC17 */

PORTE_PCR8 = PORT_PCR_MUX(0x3); // UART is alt3 function for this
pin

/* Enable the UART3_RXD function on PTC16 */

PORTE_PCR9 = PORT_PCR_MUX(0x3); // UART is alt3 function for this
pin

}

/* UART0 and UART1
are clocked from the core clock, but all other UARTs are

* clocked from the peripheral clock. So
we have to determine which clock

* to send to the
uart_init function.

*/

if ((TERM_PORT == UART0_BASE_PTR) | (TERM_PORT == UART1_BASE_PTR))

uart_init (TERM_PORT, core_clk_khz, TERMINAL_BAUD);

else

uart_init (TERM_PORT, periph_clk_khz, TERMINAL_BAUD);

}

/********************************************************************/

void trace_clk_init(void)

{

/* Set the
trace clock to the core clock frequency */

SIM_SOPT2 |= SIM_SOPT2_TRACECLKSEL_MASK;

/* Enable the TRACE_CLKOUT pin function on PTA6 (alt7 function) */

PORTA_PCR6 = ( PORT_PCR_MUX(0x7));

}

/********************************************************************/

void fb_clk_init(void)

{

/* Enable the clock to the
FlexBus module */

SIM_SCGC7 |= SIM_SCGC7_FLEXBUS_MASK;

/* Enable the FB_CLKOUT function on PTC3 (alt5 function) */

PORTC_PCR3 = ( PORT_PCR_MUX(0x5));

}

/********************************************************************/

首先写SIM_SCGC5寄存器。SCGC5表示的是System
Clock Gating Control Register 5(系统时钟门控制寄存器5).系统集成模块 --System integration module (SIM)--控制寄存器组中共有8个SCGC寄存器,它们分别控制不同外设所需要的时钟的开关,SCGC5寄存器控制的是PORTA~PORTE、TSI、REGFILE和LPTIMER时钟的开关,向对应的位写入1表示使能时钟。第一段代码分别打开了PORTA~PORTE的时钟开关。
上面pll_init(unsigned
char,unsigned char)函数用来增加系统时钟。

unsigned char pll_init(unsigned char clk_option, unsigned
char crystal_val)

{

unsigned char pll_freq;

if (clk_option > 3) {return
0;} //return
0 if one of the available options is not selected

if (crystal_val > 15) {return
1;} // return
1 if one of the available crystal options is not available

//This assumes that the MCG is in default
FEI mode out of reset.

// First move to FBE
mode

#if (defined(K60_CLK) || defined(ASB817))

MCG_C2 = 0;

#else

// Enable external oscillator, RANGE=2, HGO=1, EREFS=1, LP=0, IRCS=0

MCG_C2 = MCG_C2_RANGE(2) | MCG_C2_HGO_MASK | MCG_C2_EREFS_MASK;

#endif

// after initialization of oscillator
release latched state of oscillator and GPIO

SIM_SCGC4 |= SIM_SCGC4_LLWU_MASK;

LLWU_CS |= LLWU_CS_ACKISO_MASK;



// Select external
oscilator and Reference Divider and clear IREFS to start
ext osc

// CLKS=2, FRDIV=3, IREFS=0, IRCLKEN=0, IREFSTEN=0

MCG_C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(3);

/* if we
aren't using an osc input we don't need to wait for the
osc to init */

#if (!defined(K60_CLK) && !defined(ASB817))

while (!(MCG_S & MCG_S_OSCINIT_MASK)){}; // wait for oscillator to initialize

#endif

while (MCG_S & MCG_S_IREFST_MASK){}; // wait for Reference
clock Status bit to clear

while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x2){}; // Wait for clock
status bits to show clock source is ext ref clk

// Now in FBE

#if (defined(K60_CLK))

MCG_C5 = MCG_C5_PRDIV(0x18);

#else

// Configure PLL Ref Divider, PLLCLKEN=0, PLLSTEN=0, PRDIV=5

// The crystal frequency is used to select the
PRDIV value. Only even frequency crystals are supported

// that will produce a 2MHz reference
clock to the PLL.

MCG_C5 = MCG_C5_PRDIV(crystal_val); // Set PLL
ref divider to match the crystal used

#endif

// Ensure MCG_C6 is at
the reset default of 0. LOLIE disabled, PLL disabled, clk
monitor disabled, PLL VCO divider is clear

MCG_C6 = 0x0;

// Select the
PLL VCO divider and system clock dividers depending on clocking option

switch (clk_option) {

case 0:

// Set system
options dividers

//MCG=PLL, core = MCG, bus = MCG, FlexBus = MCG, Flash
clock= MCG/2

set_sys_dividers(0,0,0,1);

// Set the
VCO divider and enable the PLL for 50MHz, LOLIE=0, PLLS=1, CME=0, VDIV=1

MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(1); //VDIV = 1 (x25)

pll_freq = 50;

break;

case 1:

// Set system
options dividers

//MCG=PLL, core = MCG, bus = MCG/2, FlexBus = MCG/2, Flash
clock= MCG/4

set_sys_dividers(0,1,1,3);

// Set the
VCO divider and enable the PLL for 100MHz, LOLIE=0, PLLS=1, CME=0, VDIV=26

MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(26); //VDIV = 26 (x50)

pll_freq = 100;

break;

case 2:

// Set system
options dividers

//MCG=PLL, core = MCG, bus = MCG/2, FlexBus = MCG/2, Flash
clock= MCG/4

set_sys_dividers(0,1,1,3);

// Set the
VCO divider and enable the PLL for 96MHz, LOLIE=0, PLLS=1, CME=0, VDIV=24

MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(24); //VDIV = 24 (x48)

pll_freq = 96;

break;

case 3:

// Set system
options dividers

//MCG=PLL, core = MCG, bus = MCG, FlexBus = MCG, Flash
clock= MCG/2

set_sys_dividers(0,0,0,1);

// Set the
VCO divider and enable the PLL for 48MHz, LOLIE=0, PLLS=1, CME=0, VDIV=0

MCG_C6 = MCG_C6_PLLS_MASK; //VDIV = 0 (x24)

pll_freq = 48;

break;

}

while (!(MCG_S & MCG_S_PLLST_MASK)){}; // wait for PLL
status bit to set

while (!(MCG_S & MCG_S_LOCK_MASK)){}; // Wait for LOCK
bit to set

// Now running
PBE Mode

// Transition into PEE by setting
CLKS to 0

// CLKS=0, FRDIV=3, IREFS=0, IRCLKEN=0, IREFSTEN=0

MCG_C1 &= ~MCG_C1_CLKS_MASK;

// Wait for clock
status bits to update

while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x3){};

// Now running
PEE Mode

return pll_freq;

} //pll_init

这个函数中两个参数clk_option和crystal_val是两个枚举变量(enum),从它们的定义来看它们的取值范围是0~3和0~15.所以函数开始先进行有效性判断。
MCG表示的是 Multipurpose Clock Generator(多用途时钟发生器).MCG模块向MCU提供几个时钟源选择。这个模块包含了一个 frequency-locked loop (FLL)和一个
phase-locked loop (PLL).FLL可以通过内部的或外部的参考时钟源来控制,PLL可以通过外部参考时钟来控制。模块可以选择FLL或PLL的输出时钟或者内部或外部时钟源作为MCU的系统时钟。上面MCG_2指的是 MCG Control 2 Register. MCG一共有9种操作模式:FEI, FEE, FBI, FBE, PBE, PEE, BLPI,BLPE,and Stop. 不同运行模式的功耗互不相同,要进入各个模式需要写MCG_1~MCG_6寄存器组中某几个寄存器中的某几个位。 我们可以这样说,采用内部组件的模式所消耗的功率少于采用外部组件的模式。而MCG包括两种专门为低功率应用设计的模式——旁通低功耗内部(BLPI)和旁通低功耗外部(BLPE)。驱动BLPI模式的总线频率要比BLPE
模式低,因此BLPI 模式消耗的功率最小。下图2总结了每一种运行模式的功耗。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: