您的位置:首页 > 运维架构 > Linux

linuxn 内核等待队列

2014-03-23 18:28 567 查看
Linux内核的等待队列是以双循环链表为基础数据结构,与进程调度机制紧密结合,能够用于实现核心的异步事件通知机制。


在这个链表中,有两种数据结构:等待队列头(wait_queue_head_t)和等待队列项(wait_queue_t)。等待队列头和等待队列项中都包含一个list_head类型的域作为"连接件"。它通过一个双链表和把等待tast的头,和等待的进程列表链接起来。从上图可以清晰看到。所以我们知道,如果要实现一个等待队列,首先要有两个部分。队列头和队列项。下面看他们的数据结构。

[cpp]
view plaincopyprint?

struct list_head {
struct list_head *next, *prev;
};
struct __wait_queue_head {
spinlock_t lock;
struct list_head task_list;
};
typedef struct __wait_queue_head wait_queue_head_t;
struct __wait_queue {
unsigned int flags;
#define WQ_FLAG_EXCLUSIVE 0x01

void *private;//2.6版本是采用void指针,而以前的版本是struct task_struct * task;

//实际在用的时候,仍然把private赋值为task

wait_queue_func_t func;
struct list_head task_list;
};

[cpp]
view plaincopyprint?

#define   DECLARE_WAITQUEUE(name,   tsk)       /

wait_queue_t   name     =__WAITQUEUE_INITIALIZER(name,   tsk)

#define   __WAITQUEUE_INITIALIZER(name,   tsk)   {         task:     tsk,        task_list:  {  NULL,   NULL   },  __WAITQUEUE_DEBUG_INI(name)}

#define   DECLARE_WAITQUEUE(name,   tsk)       /
wait_queue_t   name     =__WAITQUEUE_INITIALIZER(name,   tsk)

#define   __WAITQUEUE_INITIALIZER(name,   tsk)   {         task:     tsk,        task_list:  {  NULL,   NULL   },  __WAITQUEUE_DEBUG_INI(name)}


它的解释是:

通过DECLARE_WAITQUEUE宏将等待队列项初始化成对应的任务结构,并且用于连接的相关指针均设置为空。其中加入了调试相关代码。

进程通过执行下面步骤将自己加入到一个等待队列中:

1) 调用DECLARE_WAITQUEUE()创建一个等待队列的项;

2) 调用add_wait_queue()把自己加入到等待队列中。该队列会在进程等待的条件满足时唤醒它。在其他地方写相关代码,在事件发生时,对等的队列执行wake_up()操作。

3) 将进程状态变更为: TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE。

4) 如果状态被置为TASK_INTERRUPTIBLE ,则信号唤醒进程。即为伪唤醒(唤醒不是因为事件的发生),因此检查并处理信号。

5) 检查condition是否为真,为真则没必要休眠,如果不为真,则调用scheduled()。

6) 当进程被唤醒的时候,它会再次检查条件是否为真。真就退出循环,否则再次调用scheduled()并一直重复这步操作。

7) condition满足后,进程将自己设置为TASK_RUNNING 并通过remove_wait_queue()退出。

4.(从等待队列头中)添加/移出等待队列
(1)add_wait_queue()函数: (2)remove_wait_queue()函数:

5.等待事件:(有条件睡眠)
1)wait_event()宏:

[cpp]
view plaincopyprint?

#define wait_event(wq, condition) /

do { /
if (condition) /
break; /
__wait_event(wq, condition); /
} while (0)

#define __wait_event_timeout(wq, condition, ret) /

do { /
DEFINE_WAIT(__wait); /
/
for (;;) { /
prepare_to_wait(&wq, &__wait, TASK_UNINTERRUPTIBLE); /
if (condition) /
break; /
ret = schedule_timeout(ret); /
if (!ret) /
break; /
} /
finish_wait(&wq, &__wait); /
} while (0)

#define wait_event(wq, condition) /

do { /
if (condition) /
break; /
__wait_event(wq, condition); /
} while (0)

#define __wait_event_timeout(wq, condition, ret) /

do { /
DEFINE_WAIT(__wait); /
/
for (;;) { /
prepare_to_wait(&wq, &__wait, TASK_UNINTERRUPTIBLE); /
if (condition) /
break; /
ret = schedule_timeout(ret); /
if (!ret) /
break; /
} /
finish_wait(&wq, &__wait); /
} while (0)

在等待会列中睡眠直到condition为真。在等待的期间,进程会被置为TASK_UNINTERRUPTIBLE进入睡眠,直到condition变量变为真。每次进程被唤醒的时候都会检查condition的值.
(2)wait_event_interruptible()函数:
和wait_event()的区别是调用该宏在等待的过程中当前进程会被设置为TASK_INTERRUPTIBLE状态.在每次被唤醒的时候,首先检查condition是否为真,如果为真则返回,否则检查如果进程是被信号唤醒,会返回-ERESTARTSYS错误码.如果是condition为真,则返回0.
(3)wait_event_timeout()宏:
也与wait_event()类似.不过如果所给的睡眠时间为负数则立即返回.如果在睡眠期间被唤醒,且condition为真则返回剩余的睡眠时间,否则继续睡眠直到到达或超过给定的睡眠时间,然后返回0.
(4)wait_event_interruptible_timeout()宏:
与wait_event_timeout()类似,不过如果在睡眠期间被信号打断则返回ERESTARTSYS错误码.
(5) wait_event_interruptible_exclusive()宏
同样和wait_event_interruptible()一样,不过该睡眠的进程是一个互斥进程.

6.唤醒队列:
(1)wake_up()函数:
唤醒等待队列.可唤醒处于TASK_INTERRUPTIBLE和TASK_UNINTERUPTIBLE状态的进程,和wait_event/wait_event_timeout成对使用.
2)wake_up_interruptible()函数: #define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)

和wake_up()唯一的区别是它只能唤醒TASK_INTERRUPTIBLE状态的进程.,与wait_event_interruptible/wait_event_interruptible_timeout/
wait_event_interruptible_exclusive成对使用.

TASK_INTERRUPTIBLE,允许通过发送signal唤醒它(即可中断的睡眠状态);
TASK_UNINTERRUPTIBLE,不接收任何 singal

7.在等待队列上睡眠:(无条件睡眠,老内核使用,新内核建议不用)
(1)sleep_on()函数:
该函数的作用是定义一个等待队列(wait),并将当前进程添加到等待队列中(wait),然后将当前进程的状态置为TASK_UNINTERRUPTIBLE,并将等待队列(wait)添加到等待队列头(q)中。之后就被挂起直到资源可以获取,才被从等待队列头(q)中唤醒,从等待队列头中移出。在被挂起等待资源期间,该进程不能被信号唤醒。
(2)sleep_on_timeout()函数:

与sleep_on()函数的区别在于调用该函数时,如果在指定的时间内(timeout)没有获得等待的资源就会返回。实际上是调用schedule_timeout()函数实现的。值得注意的是如果所给的睡眠时间(timeout)小于0,则不会睡眠。该函数返回的是真正的睡眠时间。

(3)interruptible_sleep_on()函数:
该函数和sleep_on()函数唯一的区别是将当前进程的状态置为TASK_INTERRUPTINLE,这意味在睡眠如果该进程收到信号则会被唤醒。
(4)interruptible_sleep_on_timeout()函数:
类似于sleep_on_timeout()函数。进程在睡眠中可能在等待的时间没有到达就被信号打断而被唤醒,也可能是等待的时间到达而被唤醒。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: