您的位置:首页 > 编程语言 > C语言/C++

C语言之内存分配

2014-01-29 00:00 253 查看
摘要: 使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。 使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

1 、堆和栈的区别

1.1、预备知识

1、栈区(stack):由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。

2、堆区(heap):一般由程序员分配释放,若程序员不释放,程序结束时可能由系统回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。

3、全局区/静态区(static):全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后有系统释放。

4、文字常量区:常量字符串就是放在这里的。程序结束后由系统释放。

5、程序代码区:存放函数体的二进制代码。

1.2、例子程序

int a = 0;                 // 全局初始化区
char *p1;                  // 全局未初始化区

main()
{
int b;                 // 栈
char s[] = "abc";       // 栈
char *p2;               // 栈
char *p3 = "123456";    // 123456\0在常量区,p3在栈上

static int c = 0;        // 全局(静态)初始化区

p1 = (char*)malloc(10);
p2 = (char*)malloc(20); // 分配得来得10和20字节的区域就在堆区

strcpy(p1, "123456");  // 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方
}


2、堆和栈的理论知识

2.1、申请方式

栈(stack):由系统自动分配。 例如,声明在函数中一个局部变量 int b,系统自动在栈中为b开辟空间。

堆(heap):需要程序员自己申请,并指明大小。在c中malloc函数,如p = (char *)malloc(10)。但是注意p本身是在栈中的。

2.2、申请后系统的响应

栈(stack):只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。

7ff0

堆(heap):首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

2.3、申请大小的限制

栈(stack):栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。

堆(heap):堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

2.4、申请效率的比较

栈(stack):由系统自动分配,速度较快。但程序员是无法控制的。

堆(heap):由程序员分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。

2.5、堆和栈中的存储内容

栈(stack):在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。

堆(heap):一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

2.6、存取效率的比较

char s1[] = "aaaa";    // 在运行时刻赋值的
char *s2 = "bbbb";     // 在编译时就确定的


在以后的存取中,在栈上的数组比指针所指向的字符串(例如,堆)快。

比如:

main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";

a = c[1];
a = p[1];

return;
}

// 对应的汇编代码:
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al


第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。

2.7、小结

堆和栈的区别可以用如下的比喻来看出:

使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。

使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

堆和栈的区别主要分:

操作系统方面的堆和栈,如上面说的那些,不多说了。

还有就是数据结构方面的堆和栈,这些都是不同的概念。这里的堆实际上指的就是(满足堆性质的)优先队列的一种数据结构,第1个元素有最高的优先权;栈实际上就是满足先进后出的性质的数学或数据结构。

虽然堆栈,堆栈的说法是连起来叫,但是他们还是有很大区别的,连着叫只是由于历史的原因。

3、C 内存管理详解

程序员们经常编写内存管理程序,往往提心吊胆。如果不想触雷,唯一的解决办法就是发现所有潜伏的地雷并且排除它们,躲是躲不了的。本文的内容比一般教科书的要深入得多,读者需细心阅读,做到真正地通晓内存管理。

3.1、内存分配方式

(1)从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。

(2)在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。

(3) 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。

3.2、常见的内存错误及其对策

发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到。而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。有时用户怒气冲冲地把你找来,程序却没有发生任何问题,你一走,错误又发作了。 常见的内存错误及其对策如下:

  * 内存分配未成功,却使用了它

  编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为NULL。如果指针p是函数的参数,那么在函数的入口处用assert(p!=NULL)进行检查。如果是用malloc或new来申请内存,应该用if(p==NULL) 或if(p!=NULL)进行防错处理。

  * 内存分配虽然成功,但是尚未初始化就引用它

  犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误(例如数组)。内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。

  * 内存分配成功并且已经初始化,但操作越过了内存的边界

  例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞错,导致数组操作越界。

  * 忘记了释放内存,造成内存泄露

  含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。

  动态内存的申请与释放必须配对,程序中malloc与free的使用次数一定要相同,否则肯定有错误(new/delete同理)。

  * 释放了内存却继续使用它

  (1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新设计数据结构,从根本上解决对象管理的混乱局面。

  (2)函数的return语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。

  (3)使用free或delete释放了内存后,没有将指针设置为NULL。导致产生“野指针”。

  【规则1】用malloc或new申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存。

  【规则2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。

  【规则3】避免数组或指针的下标越界,特别要当心发生“多1”或者“少1”操作。

  【规则4】动态内存的申请与释放必须配对,防止内存泄漏。
【规则5】用free或delete释放了内存之后,立即将指针设置为NULL,防止产生“野指针”。

3.3、指针与数组的对比

C程序中,指针和数组在不少地方可以相互替换着用,让人产生一种错觉,以为两者是等价的。数组要么在静态存储区被创建(如全局数组),要么在栈上被创建。数组名对应着(而不是指向)一块内存,其地址与容量在生命期内保持不变,只有数组的内容可以改变。

指针可以随时指向任意类型的内存块,它的特征是“可变”,所以我们常用指针来操作动态内存。指针远比数组灵活,但也更危险。

下面以字符串为例比较指针与数组的特性。

3.3.1 修改内容

示例中,字符数组a的容量是6个字符,其内容为hello。a的内容可以改变,如a[0]= ‘X’。指针p指向常量字符串“world”(位于静态存储区,内容为world),常量字符串的内容是不可以被修改的。从语法上看,编译器并不觉得语句p[0]= ‘X’有什么不妥,但是该语句企图修改常量字符串的内容而导致运行错误。

char a[] = "hello";
a[0] = 'X';
cout << a << endl;

char *p = "world";    // 注意p指向常量字符串
p[0] = 'X';           // 编译器不能发现该错误
cout << p << endl;


3.3.2 内容复制与比较

不能对数组名进行直接复制与比较。示例中,若想把数组a的内容复制给数组b,不能用语句 b = a ,否则将产生编译错误。应该用标准库函数strcpy进行复制。同理,比较b和a的内容是否相同,不能用if(b==a) 来判断,应该用标准库函数strcmp进行比较。

语句p = a 并不能把a的内容复制指针p,而是把a的地址赋给了p。要想复制a的内容,可以先用库函数malloc为p申请一块容量为strlen(a) 1个字符的内存,再用strcpy进行字符串复制。同理,语句if(p==a) 比较的不是内容而是地址,应该用库函数strcmp来比较。

// 数组…
char a[] = "hello";
char b[10];
strcpy(b, a); // 不能用 b = a;
if(strcmp(b, a) == 0) // 不能用 if (b == a)
…
// 指针…
int len = strlen(a);
char *p = (char *)malloc(sizeof(char)*(len 1));
strcpy(p,a); // 不要用 p = a;
if(strcmp(p, a) == 0) // 不要用 if (p == a)
…


3.3.3 计算内存容量

用运算符sizeof可以计算出数组的容量(字节数)。示例中,sizeof(a)的值是12(注意别忘了’’)。指针p指向a,但是sizeof(p)的值却是4。这是因为sizeof(p)得到的是一个指针变量的字节数,相当于sizeof(char*),而不是p所指的内存容量。C语言没有办法知道指针所指的内存容量,除非在申请内存时记住它。

注意当数组作为函数的参数进行传递时,该数组自动退化为同类型的指针。示例中,不论数组a的容量是多少,sizeof(a)始终等于sizeof(char *)。

char a[] = "hello world";
char *p = a;
cout<< sizeof(a) << endl; // 12字节
cout<< sizeof(p) << endl; // 4字节

// 计算数组和指针的内存容量
void Func(char a[100])
{
 cout<< sizeof(a) << endl; // 4字节而不是100字节
}


3.4、指针参数是如何传递内存的

如果函数的参数是一个指针,不要指望用该指针去申请动态内存。示例1中,Test函数的语句GetMemory(str, 200)并没有使str获得期望的内存,str依旧是NULL,为什么?

void GetMemory(char *p, int num)
{
p = (char *)malloc(sizeof(char) * num);
}

void Test(void)
{
char *str = NULL;
GetMemory(str, 100);  // str 仍然为 NULL
strcpy(str, "hello"); // 运行错误
}


毛病出在函数GetMemory中。编译器总是要为函数的每个参数制作临时副本,指针参数p的副本是 _p,编译器使 _p = p。
如果函数
体内的程序修改了_p的内容,就导致参数p的内容作相应的修改。这就是指针可以用作输出参数的原因。在本例中,_p申请了新的内存,只是把_p所指的内存地址改变了,但是p丝毫未变。所以函数GetMemory并不能输出任何东西。事实上,每执行一次GetMemory就会泄露一块内存,因为没有用free释放内存。

如果非得要用指针参数去申请内存,那么应该改用“指向指针的指针”,见示例2。

void GetMemory2(char **p, int num)
{
*p = (char *)malloc(sizeof(char) * num);
}

void Test2(void)
{
char *str = NULL;
GetMemory2(&str, 100); // 注意参数是 &str,而不是str
strcpy(str, "hello");
cout<< str << endl;
free(str);
}


由于“指向指针的指针”这个概念不容易理解,我们可以用函数返回值来传递动态内存。这种方法更加简单,见示例3。

char *GetMemory3(int num)
{
char *p = (char *)malloc(sizeof(char) * num);
return p;
}

void Test3(void)
{
char *str = NULL;
str = GetMemory3(100);
strcpy(str, "hello");
cout<< str << endl;
free(str);
}


用函数返回值来传递动态内存这种方法虽然好用,但是常常有人把return语句用错了。这里强调不要用return语句返回指向“栈内存”的指针,因为该内存在函数结束时自动消亡,见示例4。

char *GetString(void)
{
char p[] = "hello world";
return p; // 编译器将提出警告
}
void Test4(void)
{
char *str = NULL;
str = GetString(); // str 的内容是垃圾
cout<< str << endl;
}

用调试器逐步跟踪Test4,发现执行str = GetString语句后str不再是NULL指针,但是str的内容不是“hello world”而是垃圾。 如果把示例4改写成示例5,会怎么样?

char *GetString2(void)
{
char *p = "hello world";
return p;
}
void Test5(void)
{
char *str = NULL;
str = GetString2();
cout<< str << endl;
}


函数Test5运行虽然不会出错,但是函数GetString2的设计概念却是错误的。因为GetString2内的“hello world”是常量字符串,位于静态存储区,它在程序生命期内恒定不变。无论什么时候调用GetString2,它返回的始终是同一个“只读”的内存块。

3.5、杜绝“野指针”

  “野指针”不是NULL指针,是指向“垃圾”内存的指针。人们一般不会错用NULL指针,因为用if语句很容易判断。但是“野指针”是很危险的,if语句对它不起作用。 “野指针”的成因主要有以下几种:

  (1)指针变量没有被初始化。任何指针变量刚被创建时不会自动成为NULL指针,它的缺省值是随机的,它会乱指一气。所以,指针变量在创建的同时应当被初始化,要么将指针设置为NULL,要么让它指向合法的内存。

  (2)指针p被free或者delete之后,没有置为NULL,让人误以为p是个合法的指针。

  (3)指针操作超越了变量的作用范围。

3.6、有了malloc/free为什么还要new/delete

  malloc与free是C++ 语言的标准库函数,new/delete是C++ 的运算符。它们都可用于申请动态内存和释放内存。

  对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。

   因此C++ 语言需要一个能完成动态内存分配和初始化工作的运算符new,以及一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。我们先看一看malloc/free和new/delete如何实现对象的动态内存管理,见示例6。

class Obj
{
public :
Obj(void){ cout << “Initialization” << endl; }
~Obj(void){ cout << “Destroy” << endl; }
void Initialize(void){ cout << “Initialization” << endl; }
void Destroy(void){ cout << “Destroy” << endl; }
};
void UseMallocFree(void)
{
Obj *a = (obj *)malloc(sizeof(obj)); // 申请动态内存
a->Initialize(); // 初始化
//…
a->Destroy();    // 清除工作
free(a);         // 释放内存
}
void UseNewDelete(void)
{
Obj *a = new Obj; // 申请动态内存并且初始化
//…
delete a; // 清除并且释放内存
}


  类Obj的函数Initialize模拟了构造函数的功能,函数Destroy模拟了析构函数的功能。函数UseMallocFree中,由于malloc/free不能执行构造函数与析构函数,必须调用成员函数Initialize和Destroy来完成初始化与清除工作。函数UseNewDelete则简单得多。

  所以我们不要企图用malloc/free来完成动态对象的内存管理,应该用new/delete。由于内部数据类型的“对象”没有构造与析构的过程,对它们而言malloc/free和new/delete是等价的。

  既然new/delete的功能完全覆盖了malloc/free,为什么C++ 不把malloc/free淘汰出局呢?这是因为C++ 程序经常要调用C函数,而C程序只能用malloc/free管理动态内存。

  如果用free释放“new创建的动态对象”,那么该对象因无法执行析构函数而可能导致程序出错。如果用delete释放“malloc申请的动态内存”,理论上讲程序不会出错,但是该程序的可读性很差。所以new/delete必须配对使用,malloc/free也一样。

3.7、内存耗尽怎么办

  如果在申请动态内存时找不到足够大的内存块,malloc和new将返回NULL指针,宣告内存申请失败。通常有三种方式处理“内存耗尽”问题。

  (1)判断指针是否为NULL,如果是则马上用return语句终止本函数。

  (2)判断指针是否为NULL,如果是则马上用exit(1)终止整个程序的运行。

  (3)为new和malloc设置异常处理函数。例如Visual C 可以用_set_new_hander函数为new设置用户自己定义的异常处理函数,也可以让malloc享用与new相同的异常处理函数。详细内容请参考C 使用手册。

  上述(1)(2)方式使用最普遍。如果一个函数内有多处需要申请动态内存,那么方式(1)就显得力不从心(释放内存很麻烦),应该用方式(2)来处理。
很多人不忍心用exit(1),问:“不编写出错处理程序,让操作系统自己解决行不行?” 答:
不行。如果发生“内存耗尽”这样的事情,一般说来应用程序已经无药可救。如果不用exit(1) 把坏程序杀死,它可能会害死操作系统。道理如同:如果不把歹徒击毙,歹徒在老死之前会犯下更多的罪。

  有一个很重要的现象要告诉大家。对于32位以上的应用程序而言,无论怎样使用malloc与new,几乎不可能导致“内存耗尽”。我在Windows 98下用Visual C 编写了测试程序,见示例7。这个程序会无休止地运行下去,根本不会终止。因为32位操作系统支持“虚存”,内存用完了,自动用硬盘空间顶替。我只听到硬盘嘎吱嘎吱地响,Window 98已经累得对键盘、鼠标毫无反应。

  我可以得出这么一个结论:对于32位以上的应用程序,“内存耗尽”错误处理程序毫无用处。这下可把Unix和Windows程序员们乐坏了:反正错误处理程序不起作用,我就不写了,省了很多麻烦。
我不想误导读者,必须强调:不加错误处理将导致程序的质量很差,千万不可因小失大。

3.8、malloc/free 的使用要点

  函数malloc的原型如下:

void * malloc(size_t size);


  用malloc申请一块长度为length的整数类型的内存,程序如下:

int *p = (int *) malloc(sizeof(int) * length);


  我们应当把注意力集中在两个要素上:“类型转换”和“sizeof”。

  * malloc返回值的类型是void *,所以在调用malloc时要显式地进行类型转换,将void * 转换成所需要的指针类型。

  * malloc函数本身并不识别要申请的内存是什么类型,它只关心内存的总字节数。我们通常记不住int, float等数据类型的变量的确切字节数。例如int变量在16位系统下是2个字节,在32位下是4个字节;而float变量在16位系统下是4个字节,在32位下也是4个字节。最好用以下程序作一次测试:

cout << sizeof(char) << endl;
cout << sizeof(int) << endl;
cout << sizeof(unsigned int) << endl;
cout << sizeof(long) << endl;
cout << sizeof(unsigned long) << endl;
cout << sizeof(float) << endl;
cout << sizeof(double) << endl;
cout << sizeof(void *) << endl;


  在malloc的“()”中使用sizeof运算符是良好的风格,但要当心有时我们会昏了头,写出 p = malloc(sizeof(p))这样的程序来。

  * 函数free的原型如下:

void free( void * memblock );


  为什么free函数不象malloc函数那样复杂呢?这是因为指针p的类型以及它所指的内存的容量事先都是知道的,语句free(p)能正确地释放内存。如果p是NULL指针,那么free对p无论操作多少次都不会出问题。如果p不是NULL指针,那么free对p连续操作两次就会导致程序运行错误。

3.9、new/delete 的使用要点

  运算符new使用起来要比函数malloc简单得多,例如:

int *p1 = (int *)malloc(sizeof(int) * length);
int *p2 = new int[length];


  这是因为new内置了sizeof、类型转换和类型安全检查功能。对于非内部数据类型的对象而言,new在创建动态对象的同时完成了初始化工作。如果对象有多个构造函数,那么new的语句也可以有多种形式。例如

class Obj
{
 public :
  Obj(void);  // 无参数的构造函数
Obj(int x); // 带一个参数的构造函数
…
}
void Test(void)
{
Obj *a = new Obj;
Obj *b = new Obj(1); // 初值为1
…
delete a;
delete b;
}


  如果用new创建对象数组,那么只能使用对象的无参数构造函数。例如

Obj *objects = new Obj[100]; // 创建100个动态对象


  不能写成

Obj *objects = new Obj[100](1);// 创建100个动态对象的同时赋初值1


  在用delete释放对象数组时,留意不要丢了符号‘[]’。例如

delete []objects; // 正确的用法
delete objects;   // 错误的用法


  后者相当于delete objects[0],漏掉了另外99个对象。

3.10、一些心得体会

  我认识不少技术不错的C 程序员,很少有人能拍拍胸脯说通晓指针与内存管理(包括我自己)。我最初学习C语言时特别怕指针,导致我开发第一个应用软件(约1万行C代码)时没有使用一个指针,全用数组来顶替指针,实在蠢笨得过分。躲避指针不是办法,后来我改写了这个软件,代码量缩小到原先的一半。

  我的经验教训是:

  (1)越是怕指针,就越要使用指针。不会正确使用指针,肯定算不上是合格的程序员。

  (2)必须养成“使用调试器逐步跟踪程序”的习惯,只有这样才能发现问题的本质。

4、内存调试

4.1、引言

C 和 C++ 程序中的内存错误非常有害:它们很常见,并且可能导致严重的后果。来自计算机应急响应小组(请参见参考资料)和供应商的许多最严重的安全公告都是由简单的内存错误造成的。自从 70 年代末期以来,C 程序员就一直讨论此类错误,但其影响在 2007 年仍然很大。更糟的是,如果按我的思路考虑,当今的许多 C 和 C++ 程序员可能都会认为内存错误是不可控制而又神秘的顽症,它们只能纠正,无法预防。但事实并非如此。本文将让您在短时间内理解与良好内存相关的编码的所有本质:

(1)正确的内存管理的重要性

存在内存错误的 C 和 C++ 程序会导致各种问题。如果它们泄漏内存,则运行速度会逐渐变慢,并最终停止运行;如果覆盖内存,则会变得非常脆弱,很容易受到恶意用户的攻击。从 1988 年著名的莫里斯蠕虫 攻击到有关 Flash Player 和其他关键的零售级程序的最新安全警报都与缓冲区溢出有关:“大多数计算机安全漏洞都是缓冲区溢出”,Rodn
7fe0
ey Bates 在 2004 年写道。

在可以使用 C 或 C++ 的地方,也广泛支持使用其他许多通用语言(如 Java、Ruby、Haskell、C#、Perl、Smalltalk 等),每种语言都有众多的爱好者和各自的优点。但是,从计算角度来看,每种编程语言优于 C 或 C++ 的主要优点都与便于内存管理密切相关。与内存相关的编程是如此重要,而在实践中正确应用又是如此困难,以致于它支配着面向对象编程语言、功能性编程语言、高级编程语言、声明性编程语言和另外一些编程语言的所有其他变量或理论。

与少数其他类型的常见错误一样,内存错误还是一种隐性危害:它们很难再现,症状通常不能在相应的源代码中找到。例如,无论何时何地发生内存泄漏,都可能表现为应用程序完全无法接受,同时内存泄漏不是显而易见。

因此,出于所有这些原因,需要特别关注 C 和 C++ 编程的内存问题。让我们看一看如何解决这些问题,先不谈是哪种语言。

(2)内存错误的类别

首先,不要失去信心。有很多办法可以对付内存问题。我们先列出所有可能存在的实际问题:

1. 内存泄漏

2. 错误分配,包括大量增加 free() 释放的内存和未初始化的引用

3. 悬空指针

4. 数组边界违规

这是所有类型。即使迁移到 C++ 面向对象的语言,这些类型也不会有明显变化;无论数据是简单类型还是 C 语言的 struct 或 C++ 的类,C 和 C++ 中内存管理和引用的模型在原理上都是相同的。以下内容绝大部分是“纯 C”语言,对于扩展到 C++ 主要留作练习使用。

1. 内存泄漏

在分配资源时会发生内存泄漏,但是它从不回收。下面是一个可能出错的模型(请参见清单 1):

清单 1. 简单的潜在堆内存丢失和缓冲区覆盖

void f1(char *explanation)
{
char p1;
p1 = malloc(100);
sprintf(p1, "The f1 error occurred because of '%s'.",explanation);
local_log(p1);
}


您看到问题了吗?除非 local_log() 对 free() 释放的内存具有不寻常的响应能力,否则每次对 f1 的调用都会泄漏 100 字节。在记忆棒增量分发数兆字节内存时,一次泄漏是微不足道的,但是连续操作数小时后,即使如此小的泄漏也会削弱应用程序。

在实际的 C 和 C++ 编程中,这不足以影响您对 malloc() 或 new 的使用,本部分开头的句子提到了“资源”不是仅指“内存”,因为还有类似以下内容的示例(请参见清单 2)。FILE 句柄可能与内存块不同,但是必须对它们给予同等关注:

清单 2. 来自资源错误管理的潜在堆内存丢失

int getkey(char *filename)
{
FILE *fp;
int key;
fp = fopen(filename, "r");
fscanf(fp, "%d", &key);
return key;
}


fopen 的语义需要补充性的 fclose。在没有 fclose() 的情况下,C 标准不能指定发生的情况时,很可能是内存泄漏。其他资源(如信号量、网络句柄、数据库连接等)同样值得考虑。

2. 内存错误分配

错误分配的管理不是很困难。下面是一个示例(请参见清单 3):

清 3. 未初始化的指针

void f2(int datum)
{
int *p2;
/* Uh-oh!  No one has initialized p2. */
*p2 = datum;
...
}


关于此类错误的好消息是,它们一般具有显著结果。在 AIX 下,对未初始化指针的分配通常会立即导致 segmentation fault 错误。它的好处是任何此类错误都会被快速地检测到;与花费数月时间才能确定且难以再现的错误相比,检测此类错误的代价要小得多。在此错误类型中存在多个变种。free() 释放的内存比 malloc() 更频繁(请参见清单 4):

清单 4. 两个错误的内存释放

/* Allocate once, free twice. */
void f3()
{
char *p;
p = malloc(10);
...
free(p);
...
free(p);
}
/* Allocate zero times, free once. */
void f4()
{
char *p;
/* Note that p remains uninitialized here. */
free(p);
}


这些错误通常也不太严重。尽管 C 标准在这些情形中没有定义具体行为,但典型的实现将忽略错误,或者快速而明确地对它们进行标记;总之,这些都是安全情形。

3. 悬空指针

悬空指针比较棘手。当程序员在内存资源释放后使用资源时会发生悬空指针(请参见清单 5):

void f8()
{
struct x *xp;
xp = (struct x *) malloc(sizeof (struct x));
xp.q = 13;
...
free(xp);
...
/* Problem!  There's no guarantee that
the memory block to which xp points
hasn't been overwritten. */
return xp.q;
}


传统的“调试”难以隔离悬空指针。由于下面两个明显原因,它们很难再现:

? 即使影响提前释放内存范围的代码已本地化,内存的使用仍然可能取决于应用程序甚至(在极端情况下)不同进程中的其他执行位置。

? 悬空指针可能发生在以微妙方式使用内存的代码中。结果是,即使内存在释放后立即被覆盖,并且新指向的值不同于预期值,也很难识别出新值是错误值。

4. 数组边界违规

数组边界违规十分危险,它是内存错误管理的最后一个主要类别。回头看一下清单 1;如果 explanation 的长度超过 80,则会发生什么情况?回答:难以预料,但是它可能与良好情形相差甚远。特别是,C 复制一个字符串,该字符串不适于为它分配的 100 个字符。在任何常规实现中,“超过的”字符会覆盖内存中的其他数据。内存中数据分配的布局非常复杂并且难以再现,所以任何症状都不可能追溯到源代码级别的具体错误。这些错误通常会导致数百万美元的损失。

4.2、内存编程的策略

勤奋和自律可以让这些错误造成的影响降至最低限度。下面我们介绍一下您可以采用的几个特定步骤;我在各种组织中处理它们的经验是,至少可以按一定的数量级持续减少内存错误。

4.3、编码风格

编码风格是最重要的,我还从没有看到过其他任何作者对此加以强调。影响资源(特别是内存)的函数和方法需要显式地解释本身。下面是有关标头、注释或名称的一些示例(请参见清单 6)。

清单 6. 识别资源的源代码示例

/********
* ...
*
* Note that any function invoking protected_file_read()
* assumes responsibility eventually to fclose() its
* return value, UNLESS that value is NULL.
*
********/
FILE *protected_file_read(char *filename)
{
FILE *fp;
fp = fopen(filename, "r");
if (fp) {
...
} else {
...
}
return fp;
}
/*******
* ...
*
* Note that the return value of get_message points to a
* fixed memory location.  Do NOT free() it; remember to
* make a copy if it must be retained ...
*
********/
char *get_message()
{
static char this_buffer[400];
...
(void) sprintf(this_buffer, ...);
return this_buffer;
}
/********
* ...
* While this function uses heap memory, and so
* temporarily might expand the over-all memory
* footprint, it properly cleans up after itself.
*
********/
int f6(char *item1)
{
my_class c1;
int result;
...
c1 = new my_class(item1);
...
result = c1.x;
delete c1;
return result;
}
/********
* ...
* Note that f8() is documented to return a value
* which needs to be returned to heap; as f7 thinly
* wraps f8, any code which invokes f7() must be
* careful to free() the return value.
*
********/
int *f7()
{
int *p;
p = f8(...);
...
return p;
}


使这些格式元素成为您日常工作的一部分。可以使用各种方法解决内存问题:

? 专用库

? 语言

? 软件工具

? 硬件检查器

在这整个领域中,我始终认为最有用并且投资回报率最大的是考虑改进源代码的风格。它不需要昂贵的代价或严格的形式;可以始终取消与内存无关的段的注释,但影响内存的定义当然需要显式注释。添加几个简单的单词可使内存结果更清楚,并且内存编程会得到改进。

我没有做受控实验来验证此风格的效果。如果您的经历与我一样,您将发现没有说明资源影响的策略简直无法忍受。这样做很简单,但带来的好处太多了。

4.4、检测

检测是编码标准的补充。二者各有裨益,但结合使用效果特别好。机灵的 C 或 C++ 专业人员甚至可以浏览不熟悉的源代码,并以极低的成本检测内存问题。通过少量的实践和适当的文本搜索,您能够快速验证平衡的 *alloc() 和 free() 或者 new 和 delete 的源主体。人工查看此类内容通常会出现像清单 7 中一样的问题。

清单 7. 棘手的内存泄漏

static char *important_pointer = NULL;
void f9()
{
if (!important_pointer)
important_pointer = malloc(IMPORTANT_SIZE);
...
if (condition)
/* Ooops!  We just lost the reference
important_pointer already held. */
important_pointer = malloc(DIFFERENT_SIZE);
...
}


如果 condition 为真,简单使用自动运行时工具不能检测发生的内存泄漏。仔细进行源分析可以从此类条件推理出证实正确的结论。我重复一下我写的关于风格的内容:尽管大量发布的内存问题描述都强调工具和语言,对于我来说,最大的收获来自“软的”以开发人员为中心的流程变更。您在风格和检测上所做的任何改进都可以帮助您理解由自动化工具产生的诊断。

1. 静态的自动语法分析

当然,并不是只有人类才能读取源代码。您还应使静态语法分析 成为开发流程的一部分。静态语法分析是 lint、严格编译 和几种商业产品执行的内容:扫描编译器接受的源文本和目标项,但这可能是错误的症状。希望让您的代码无 lint。尽管 lint 已过时,并有一定的局限性,但是,没有使用它(或其较高级的后代)的许多程序员犯了很大的错误。通常情况下,您能够编写忽略 lint 的优秀的专业质量代码,但努力这样做的结果通常会发生重大错误。其中一些错误影响内存的正确性。与让客户首先发现内存错误的代价相比,即使对这种类别的产品支付最昂贵的许可费也失去了意义。清除源代码。现在,即使 lint 标记的编码可能向您提供所需的功能,但很可能存在更简单的方法,该方法可满足 lint,并且比较强键又可移植。

2. 内存库

补救方法的最后两个类别与前三个明显不同。前者是轻量级 的;一个人可以容易地理解并实现它们。另一方面,内存库和工具通常具有较高的许可费用,对部分开发人员来说,它们需要进一步完善和调整。有效地使用库和工具的程序员是理解轻量级的静态 方法的人员。可用的库和工具给人的印象很深:其作为组的质量很高。但是,即使最优秀的编程人员也可能会被忽略内存管理基本原则的非常任性的编程人员搅乱。据我观察,普通的编程人员在尝试利用内存库和工具进行隔离工作时也只能感到灰心。由于这些原因,我们催促 C 和 C++ 程序员为解决内存问题先了解一下自己的源。在这完成之后,才去考虑库。

使用几个库能够编写常规的 C 或 C++ 代码,并保证改进内存管理。Jonathan Bartlett 在 developerWorks 的 2004 评论专栏中介绍了主要的候选项,可以在下面的参考资料部分获得。库可以解决多种不同的内存问题,以致于直接对它们进行比较是非常困难的;这方面的常见主题包括垃圾收集、智能指针 和 智能容器。大体上说,库可以自动进行较多的内存管理,这样程序员可以犯更少的错误。

我对内存库有各种感受。他们在努力工作,但我看到他们在项目中获得的成功比预期要小,尤其在 C 方面。我尚未对这些令人失望的结果进行仔细分析。例如,业绩应该与相应的手动 内存管理一样好,但是这是一个灰色区域——尤其在垃圾收集库处理速度缓慢的情况下。通过这方面的实践得出的最明确的结论是,与 C 关注的代码组相比,C++ 似乎可以较好地接受智能指针。

3. 内存工具

开发真正基于 C 的应用程序的开发团队需要运行时内存工具作为其开发策略的一部分。已介绍的技术很有价值,而且不可或缺。在您亲自尝试使用内存工具之前,其质量和功能您可能还不了解。本文主要讨论了基于软件的内存工具。还有硬件内存调试器;在非 常特殊的情况下(主要是在使用不支持其他工具的专用主机时)才考虑它们。市场上的软件内存工具包括专有工具(如 IBM Rational? Purify 和 Electric Fence)和其他开放源代码工具。其中有许多可以很好地与 AIX 和其他操作系统一起使用。所有内存工具的功能基本相同:构建可执行文件的特定版本(很像在编译时通过使用 -g 标记生成的调试版本)、练习相关应用程序和研究由工具自动生成的报告。请考虑如清单 8 所示的程序。

清单 8. 示例错误

int main()
{
char p[5];
strcpy(p, "Hello, world.");
puts(p);
}


此程序可以在许多环境中“运行”,它编译、执行并将“Hello, world.\n”打印到屏幕。使用内存工具运行相同应用程序会在第四行产生一个数组边界违规的报告。在了解软件错误(将十四个字符复制到了只能容纳五个字符的空间中)方面,这种方法比在客户处查找错误症状的花费小得多。这是内存工具的功劳。

4.5、结束语

作为一名成熟的 C 或 C++ 程序员,您认识到内存问题值得特别关注。通过制订一些计划和实践,可以找到控制内存错误的方法。学习内存使用的正确模式,快速发现可能发生的错误,使本文介绍的技术成为您日常工作的一部分。您可以在开始时就消除应用程序中的症状,否则可能要花费数天或数周时间来调试。

@
以上内容搜集于网络,本人仅是整理 @
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息