您的位置:首页 > 其它

s3c2440的2440init.s详解

2014-01-08 09:36 239 查看
;=========================================

; NAME: 2440INIT.S

; DESC: C start up codes

; Configure memory, ISR ,stacks

; Initialize C-variables

; HISTORY:

; 2002.02.25:kwtark: ver 0.0

; 2002.03.20:purnnamu: Add some functions for testing STOP,Sleep mode

; 2003.03.14:DonGo: Modified for 2440.

;=========================================

//汇编不能使用include包含头文件所以用Get,汇编也不认识*.h 文件,只能用*.inc,这三条是头文件包含的意思

GET option.inc;

GET memcfg.inc

GET 2440addr.inc

BIT_SELFREFRESH EQU (1<<22) //EQU的作用和#define相似

;Pre-defined constants

USERMODE EQU 0x10

FIQMODE EQU 0x11

IRQMODE EQU 0x12

SVCMODE EQU 0x13

ABORTMODE EQU 0x17

UNDEFMODE EQU 0x1b

MODEMASK EQU 0x1f

NOINT EQU 0xc0

;The location of stacks

UserStack EQU (_STACK_BASEADDRESS-0x3800) ;0x33ff4800 ~

SVCStack EQU (_STACK_BASEADDRESS-0x2800) ;0x33ff5800 ~

UndefStack EQU (_STACK_BASEADDRESS-0x2400) ;0x33ff5c00 ~

AbortStack EQU (_STACK_BASEADDRESS-0x2000) ;0x33ff6000 ~

IRQStack EQU (_STACK_BASEADDRESS-0x1000) ;0x33ff7000 ~

FIQStack EQU (_STACK_BASEADDRESS-0x0) ;0x33ff8000 ~

;Check if tasm.exe(armasm -16 ...@ADS 1.0) is used. //16位编译环境使用tasm.exe编译

GBLL THUMBCODE //GBLL伪操作声明一个全局的逻辑变量,并将其初始化成FALSE

//CONFIG ADS定义的内部变量,属于内置变量,含义为:如果汇编器编译的为ARM指令,其{CONFIG} 返回为32,

//如果汇编器编译的为T指令,其{CONFIG} 返回为16。 {}代表引用该变量名

[ {CONFIG} = 16 //"["表示"if","|"表示"else","]"表示"endif"

THUMBCODE SETL {TRUE} //SETL赋值运算,L表示用于给一个逻辑变量赋值

CODE32

//CODE16伪指令通知编译器,其后的指令序列为16位的Thumb指令。

//CODE32伪指令通知编译器,其后的指令序列为32位的ARM指令。

//另一方面暂且把处理器设置成为ARM模式,以方便初始化

|

THUMBCODE SETL {FALSE}

]

//MACRO伪操作标识宏定义的开始,MEND标识宏定义的结束。用MACRO及MEND定义一段代码,称为宏定义//体,这样在程序中就可以通过宏指令多次调用该代码段。

MACRO

MOV_PC_LR

[ THUMBCODE

bx lr // bx lr的作用等同于mov pc,lr

| // ARM体系结构中LR的特殊用途有两种:一是用来保存子程序返回地址;二是当异常发生时,LR中//保存的值等于异常发生时PC的值减4(或者减2),因此在各种异常模式下可以根据LR的值返回到异常发生前的//相应位置继续执行。

mov pc,lr

]

MEND

MACRO

MOVEQ_PC_LR

[ THUMBCODE

bxeq lr //相等则跳转,相等与否由寄存器某些位确定,在此处,由其上一句的指令执行结果决定

|

moveq pc,lr

]

MEND

MACRO

$HandlerLabel HANDLER $HandleLabel

//$HandlerLabel 和 $HandleLabel是两个参数,第一个参数和第二个参数是不一样的,中间少了个r,而第一个参数//在本宏中是一个标号,而第二个函数是一个入口地址。

$HandlerLabel

sub sp,sp,#4 ;decrement sp(to store jump address)

stmfd sp!,{r0} ;PUSH the work register to stack(lr does not push because it return to original address)

ldr r0,=$HandleLabel;load the address of HandleXXX to r0

//ldr完成从存储器中装载数据到通用寄存器

ldr r0,[r0] ;load the contents(service routine start address) of HandleXXX

str r0,[sp,#4] ;store the contents(ISR) of HandleXXX to stack

//str是寄存器数据到内存,即存储

ldmfd sp!,{r0,pc} ;POP the work register and pc(jump to ISR) //感叹号表示更新寄存器值

MEND

IMPORT |Image$$RO$$Base| ; Base of ROM code

IMPORT |Image$$RO$$Limit| ; End of ROM code (=start of ROM data)

IMPORT |Image$$RW$$Base| ; Base of RAM to initialise

IMPORT |Image$$ZI$$Base| ; Base and limit of area

IMPORT |Image$$ZI$$Limit| ; to zero initialise

IMPORT MMU_SetAsyncBusMode

IMPORT MMU_SetFastBusMode ;

IMPORT Main ; The main entry of mon program

IMPORT CopyProgramFromNand //引入外部的函数

//AREA 命令指示汇编程序汇编一个新的代码段或数据段。段是独立的、指定的、不可见的,它们由链接程序处理。

AREA Init,CODE,READONLY //AREA 段名,属性,属性

ENTRY //ENTRY伪操作用于指定汇编程序的入口点

EXPORT __ENTRY //EXPORT 伪指令用于在程序中声明一个全局的标号,该标号可在其他的文件中引用。

__ENTRY

ResetEntry

//ResetEntry的值在ARM上电运行时是0X00000000,在JTAG仿真时是0X30000000。这个值在拷贝程序时会用到。

;1)The code, which converts to Big-endian, should be in little endian code.

;2)The following little endian code will be compiled in Big-Endian mode.

; The code byte order should be changed as the memory bus width.

;3)The pseudo instruction,DCD can not be used here because the linker generates error.

ASSERT :DEF:ENDIAN_CHANGE // ASSERT 是断言伪指令,语法是:ASSERT +逻辑表达式

// def 是逻辑伪操作符,格式为: :DEF:label,作用是:判断label是否定义过

[ ENDIAN_CHANGE

ASSERT :DEF:ENTRY_BUS_WIDTH

[ ENTRY_BUS_WIDTH=32

b ChangeBigEndian ;DCD 0xea000007 // ChangeBigEndian标号在下文,这句作用为32位长度时跳转到ChangeBigEndian处

]

[ ENTRY_BUS_WIDTH=16

andeq r14,r7,r0,lsl #20 ;DCD 0x0007ea00 //16位跳转到ChangeBigEndian处,长度不同则指令不同

]

[ ENTRY_BUS_WIDTH=8

streq r0,[r0,-r10,ror #1] ;DCD 0x070000ea //8位跳转到ChangeBigEndian处,长度不同则指令不同

]

|

b ResetHandler //当没有定义总线宽度时跳转到复位中断处,这条语句放在0x00处

]

//启动代码开始是一个异常向量表,这个向量表是固定的,由处理器决定,必须要放在0x0地址那个地方,这个跟51单片机的中断向量表相类似。

//Q:既然ResetEntry的地址是0x0,那么为什么上面的指令只占了4个字节?

//A:因为上面的指令,ASSERT以及[等都是伪指令,不会编译为代码

b HandlerUndef ;handler for Undefined mode //0x04

b HandlerSWI ;handler for SWI interrupt //0x08

b HandlerPabort ;handler for PAbort //0x0C

b HandlerDabort ;handler for DAbort //0x10

b . ;reserved //0x14

b HandlerIRQ ;handler for IRQ interrupt //0x18

b HandlerFIQ ;handler for FIQ interrupt //0x1C

;@0x20

b EnterPWDN ; Must be @0x20.

ChangeBigEndian //标号

;@0x24

[ ENTRY_BUS_WIDTH=32 //DCD指令用于分配一片连续的字存储单元并用指定的数据初始化。
DCD 0xee110f10 ;0xee110f10 => mrc p15,0,r0,c1,c0,0

DCD 0xe3800080 ;0xe3800080 => orr r0,r0,#0x80; //Big-endian

DCD 0xee010f10 ;0xee010f10 => mcr p15,0,r0,c1,c0,0

]

[ ENTRY_BUS_WIDTH=16

DCD 0x0f10ee11

DCD 0x0080e380

DCD 0x0f10ee01

]

[ ENTRY_BUS_WIDTH=8

DCD 0x100f11ee

DCD 0x800080e3

DCD 0x100f01ee

]

DCD 0xffffffff ;swinv 0xffffff is similar with NOP and run well in both endian mode.

DCD 0xffffffff //填充作用

DCD 0xffffffff

DCD 0xffffffff

DCD 0xffffffff

b ResetHandler

HandlerFIQ HANDLER HandleFIQ //通过宏的名称HANDLER调用宏,其中宏的标号为HandlerFIQ

HandlerIRQ HANDLER HandleIRQ

HandlerUndef HANDLER HandleUndef

HandlerSWI HANDLER HandleSWI

HandlerDabort HANDLER HandleDabort

HandlerPabort HANDLER HandlePabort

IsrIRQ

sub sp,sp,#4 //reserved for PC,给PC寄存器保留的值

stmfd sp!,{r8-r9} //把r8-r9压入栈

ldr r9,=INTOFFSET // ldr完成从存储器中装载数据到通用寄存器

ldr r9,[r9]

ldr r8,=HandleEINT0 //这就是我们第二个中断向量表的入口的,先装入r8

add r8,r8,r9,lsl #2 //lsl #2表示r9左移两位

ldr r8,[r8]

str r8,[sp,#8] //str是寄存器数据到内存,即存储

ldmfd sp!,{r8-r9,pc} //出栈操作,感叹号表示更新寄存器值

// LTORG用于声明一个数据缓冲池,(也称为文字池)的开始。在使用伪指令LDR时,常常需要在适当的地方加入LTORG声明数据缓冲池,LDR加载的数据暂时被编译器放于数据缓冲池中。LTORG伪操作通常放在无条件跳转指令之后,或者子程序返回指令之后,这样处理器就不会错误的将数据缓冲池中的数据当作指令来执行。
LTORG

;=======

; ENTRY

;=======

ResetHandler

ldr r0,=WTCON ;watch dog disable

ldr r1,=0x0

str r1,[r0]

ldr r0,=INTMSK

ldr r1,=0xffffffff ;all interrupt disable

str r1,[r0]

ldr r0,=INTSUBMSK

ldr r1,=0x7fff ;all sub interrupt disable

str r1,[r0]

[ {TRUE}

;rGPFDAT = (rGPFDAT & ~(0xf<<4)) | ((~data & 0xf)<<4);

; Led_Display

ldr r0,=GPBCON

ldr r1,=0x00555555

str r1,[r0]

ldr r0,=GPBDAT

ldr r1,=0x07fe

str r1,[r0]

]

;To reduce PLL lock time, adjust the LOCKTIME register.

ldr r0,=LOCKTIME

ldr r1,=0xffffff

str r1,[r0]

[ PLL_ON_START

; Added for confirm clock divide. for 2440.

; Setting value Fclk:Hclk:Pclk

ldr r0,=CLKDIVN

ldr r1,=CLKDIV_VAL ; 0=1:1:1, 1=1:1:2, 2=1:2:2, 3=1:2:4, 4=1:4:4, 5=1:4:8, 6=1:3:3, 7=1:3:6.

str r1,[r0]

; MMU_SetAsyncBusMode and MMU_SetFastBusMode over 4K, so do not call here

; call it after copy

; [ CLKDIV_VAL>1 ; means Fclk:Hclk is not 1:1.

; bl MMU_SetAsyncBusMode

; |

; bl MMU_SetFastBusMode ; default value.

; ]

// MMU_SetAsyncBusMode 和 MMU_SetFastBusMode 都在4K代码以上, 如果你想你编译出来的程序能在NAND上运行的话,就不要在这调用这两函数了不能用这两函数,自己写还不行吗,下面的代码这这么来了,实现和上面两函数一样的功能

;program has not been copied, so use these directly

[ CLKDIV_VAL>1 ; means Fclk:Hclk is not 1:1.

mrc p15,0,r0,c1,c0,0

orr r0,r0,#0xc0000000;R1_nF:OR:R1_iA

mcr p15,0,r0,c1,c0,0

|

mrc p15,0,r0,c1,c0,0

bic r0,r0,#0xc0000000;R1_iA:OR:R1_nF

mcr p15,0,r0,c1,c0,0

]

;Configure UPLL

ldr r0,=UPLLCON

ldr r1,=((U_MDIV<<12)+(U_PDIV<<4)+U_SDIV)

str r1,[r0]

nop ; Caution: After UPLL setting, at least 7-clocks delay must be inserted for

setting hardware be completed.

nop

nop

nop

nop

nop

nop

;Configure MPLL

ldr r0,=MPLLCON

ldr r1,=((M_MDIV<<12)+(M_PDIV<<4)+M_SDIV) ;Fin=16.9344MHz

str r1,[r0]

]

;Check if the boot is caused by the wake-up from SLEEP mode.

ldr r1,=GSTATUS2

ldr r0,[r1]

tst r0,#0x2

;In case of the wake-up from SLEEP mode, go to SLEEP_WAKEUP handler.

bne WAKEUP_SLEEP //查看是否是由睡眠状态启动,如果是则跳转到WAKEUP_SLEEP状态

EXPORT StartPointAfterSleepWakeUp

StartPointAfterSleepWakeUp

;Set memory control registers

;ldr r0,=SMRDATA

adrl r0, SMRDATA ;be careful!

ldr r1,=BWSCON ;BWSCON Address

add r2, r0, #52 ;End address of SMRDATA

0

ldr r3, [r0], #4

str r3, [r1], #4

cmp r2, r0

bne %B0

; check if EIN0 button is pressed //如果 EINT0 产生(这中断就是我们按键产生的), 就清除SDRAM

ldr r0,=GPFCON

ldr r1,=0x0

str r1,[r0]

ldr r0,=GPFUP

ldr r1,=0xff

str r1,[r0]

ldr r1,=GPFDAT

ldr r0,[r1]

bic r0,r0,#(0x1e<<1) ; bit clear

tst r0,#0x1

bne %F1 //如果没有按,就跳到后面的1标号处 => Initialize stacks

; Clear SDRAM Start //如果按下键则进行清除SDRAM的操作

ldr r0,=GPFCON

ldr r1,=0x55aa

str r1,[r0]

; ldr r0,=GPFUP

; ldr r1,=0xff

; str r1,[r0]

ldr r0,=GPFDAT

ldr r1,=0x0

str r1,[r0] ;LED=****

mov r1,#0

mov r2,#0

mov r3,#0

mov r4,#0

mov r5,#0

mov r6,#0

mov r7,#0

mov r8,#0

ldr r9,=0x4000000 ;64MB

ldr r0,=0x30000000

0 //0表示局部标号,可以重复出现

stmia r0!,{r1-r8}

subs r9,r9,#32

bne %B0 //%B 代表,往前搜索 lable为0的行;bne %F1,这是向后搜索lable为1的行

;Clear SDRAM End

1

;Initialize stacks

bl InitStacks

;===========================================================

// BL指令在转移到子程序执行之前,将其下一条指令的地址拷贝到R14(LR,链接寄存器)。由于BL指令保存了下条指令的地址,因此使用指令“MOV PC ,LR”即可实现子程序的返回。

ldr r0, =BWSCON

ldr r0, [r0] //BWSCON的[2:1]反映了外部引脚OM[1:0]:若OM[1:0] != 00, 从NOR FLash启动或直接在内存运行;若OM[1:0]==00,则为Nand Flash Mode

ands r0, r0, #6 //#6 == 0110 --> BWSCON[2:1]

bne copy_proc_beg //OM[1:0] != 00,NOR FLash boot,不读取NAND FLASH

adr r0, ResetEntry ;OM[1:0] == 0, NAND FLash boot

cmp r0, #0 ;if use Multi-ice, //如果R0等于0,那么它就将状态寄存器中的Z置为1

//如果是0才是真正从NAND 启动,因为其4k被复制到0地址开始的stepingstone 内部sram中, 如果!=0,说明在using ice, 这种情况也不读取NAND FLASH, JTAG调试时是直接下载到SDRAM中运行,不需要再从nand拷贝
bne copy_proc_beg ;do not read nand flash for boot //不为0就跳转

;nop

;===========================================================

nand_boot_beg //这一段代码完成从NAND Flash读代码到RAM

[ {TRUE} //个人感觉是宏名使用值的时候加{},变量的话就不用了。。。

bl CopyProgramFromNand // CopyProgramFromNand是一个外部的函数

|

mov r5, #NFCONF //首先设置NAND的一些控制寄存器

;set timing value

ldr r0, =(7<<12)|(7<<8)|(7<<4)

str r0, [r5]

;enable control

ldr r0, =(0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0)

str r0, [r5, #4]

bl ReadNandID //按着读取NAND的ID号,结果保存在r5里

mov r6, #0

ldr r0, =0xec73 //期望的NAND ID号

cmp r5, r0

beq %F1

ldr r0, =0xec75 //期望的另一个NAND ID号

cmp r5, r0

beq %F1 //相等的话就跳到下一个1标号处

mov r6, #1 //不相等,设置r6=1

1

bl ReadNandStatus //读取NAND状态,结果放在r1里

mov r8, #0 //r8设初值0,意义为页号

ldr r9, =ResetEntry //这里使用的是ldr伪指令,而不是上面用的adr伪指令,它加载的是ResetEntry的绝对地址,也就是我们期望的RAM中的地址,在这里,它和|Image$$RO$$Base|一样

2

ands r0, r8, #0x1f //凡r8为0x1f(32)的整数倍-1,eq有效,ne无效

bne %F3

mov r0, r8

bl CheckBadBlk

cmp r0, #0

addne r8, r8, #32 //存在坏块的话就跳过这个坏块: + 32得到下一块. 故: r8 = blockpage addr,因为读写是按页进行的(每页512Byte)

bne %F4

3

mov r0, r8

mov r1, r9

bl ReadNandPage

add r9, r9, #512 //每一页的大小是512Bytes

add r8, r8, #1

4

cmp r8, #5120 //比较是否读完5120页即2.5M Bytes

bcc %B2

mov r5, #NFCONF ;DsNandFlash

ldr r0, [r5, #4]

bic r0, r0, #1

str r0, [r5, #4]

]

ldr pc, =copy_proc_beg

;===========================================================

copy_proc_beg

adr r0, ResetEntry

ldr r2, BaseOfROM

cmp r0, r2 //比较 ResetEntry 和 BaseOfROM

ldreq r0, TopOfROM //如果相等的话(在内存运行 --- ice -- 无需复制code区中的ro段,但需要复制code区中的rw段),TopOfROM->r0

beq InitRam

//下面这个是针对代码在NOR FLASH时的拷贝方法功能为把从ResetEntry起,TopOfROM-BaseOfROM大小的数据拷到BaseOfROM //TopOfROM和BaseOfROM为|Image$$RO$$Limit|和|Image$$RO$$Base||Image$$RO$$Limit|和|Image$$RO$$Base|由连接器生成为生成

//的代码的代码段运行时的起启和终止地址BaseOfBSS和BaseOfZero为|Image$$RW$$Base|和|Image$$ZI$$Base| |Image$$RW$$Base|和//|Image$$ZI$$Base|也是由连接器生成两者之间就是初始化数据的存放地

ldr r3, TopOfROM

0

ldmia r0!, {r4-r7} //开始时,r0 = ResetEntry --- source

stmia r2!, {r4-r7} //开始时,r2 = BaseOfROM --- destination

cmp r2, r3 //终止条件:复制了TopOfROM-BaseOfROM大小

bcc %B0

sub r2, r2, r3

sub r0, r0, r2

InitRam

ldr r2, BaseOfBSS

ldr r3, BaseOfZero

0

cmp r2, r3

ldrcc r1, [r0], #4

strcc r1, [r2], #4

bcc %B0

mov r0, #0

ldr r3, EndOfBSS

1

cmp r2, r3

strcc r0, [r2], #4

bcc %B1

ldr pc, =%F2 ;goto compiler address

2

; [ CLKDIV_VAL>1 ; means Fclk:Hclk is not 1:1.

; bl MMU_SetAsyncBusMode

; |

; bl MMU_SetFastBusMode ; default value.

; ]

;bl Led_Test

;===========================================================

; Setup IRQ handler

ldr r0,=HandleIRQ ;This routine is needed

ldr r1,=IsrIRQ ;if there is not 'subs pc,lr,#4' at 0x18, 0x1c

str r1,[r0]

; ;Copy and paste RW data/zero initialized data

; ldr r0, =|Image$$RO$$Limit| ; Get pointer to ROM data

; ldr r1, =|Image$$RW$$Base| ; and RAM copy

; ldr r3, =|Image$$ZI$$Base|

;

; ;Zero init base => top of initialised data

; cmp r0, r1 ; Check that they are different

; beq %F2

;1

; cmp r1, r3 ; Copy init data

; ldrcc r2, [r0], #4 ;--> LDRCC r2, [r0] + ADD r0, r0, #4

; strcc r2, [r1], #4 ;--> STRCC r2, [r1] + ADD r1, r1, #4

; bcc %B1

;2

; ldr r1, =|Image$$ZI$$Limit| ; Top of zero init segment

; mov r2, #0

;3

; cmp r3, r1 ; Zero init

; strcc r2, [r3], #4

; bcc %B3

[ :LNOT:THUMBCODE // L是logic逻辑 NOT就是not判断THUMBCODE的逻辑真假

bl Main ;Do not use main() because ......

;ldr pc, =Main ;

b .

]

[ THUMBCODE ;for start-up code for Thumb mode

orr lr,pc,#1

bx lr

CODE16

bl Main ;Do not use main() because ......

b .

CODE32

]

;function initializing stacks

InitStacks

;Do not use DRAM,such as stmfd,ldmfd......

;SVCstack is initialized before

;Under toolkit ver 2.5, 'msr cpsr,r1' can be used instead of 'msr cpsr_cxsf,r1'

mrs r0,cpsr

bic r0,r0,#MODEMASK

orr r1,r0,#UNDEFMODE|NOINT

msr cpsr_cxsf,r1 ;UndefMode

ldr sp,=UndefStack ; UndefStack=0x33FF_5C00

orr r1,r0,#ABORTMODE|NOINT

msr cpsr_cxsf,r1 ;AbortMode

ldr sp,=AbortStack ; AbortStack=0x33FF_6000

orr r1,r0,#IRQMODE|NOINT

msr cpsr_cxsf,r1 ;IRQMode

ldr sp,=IRQStack ; IRQStack=0x33FF_7000

orr r1,r0,#FIQMODE|NOINT

msr cpsr_cxsf,r1 ;FIQMode

ldr sp,=FIQStack ; FIQStack=0x33FF_8000

bic r0,r0,#MODEMASK|NOINT

orr r1,r0,#SVCMODE

msr cpsr_cxsf,r1 ;SVCMode

ldr sp,=SVCStack ; SVCStack=0x33FF_5800

;USER mode has not be initialized.

mov pc,lr

;The LR register will not be valid if the current mode is not SVC mode.

;===========================================================

[ {TRUE}

|

ReadNandID

mov r7,#NFCONF

ldr r0,[r7,#4] ;NFChipEn();

bic r0,r0,#2

str r0,[r7,#4]

mov r0,#0x90 ;WrNFCmd(RdIDCMD);

strb r0,[r7,#8]

mov r4,#0 ;WrNFAddr(0);

strb r4,[r7,#0xc]

1 ;while(NFIsBusy());

ldr r0,[r7,#0x20]

tst r0,#1

beq %B1

ldrb r0,[r7,#0x10] ;id = RdNFDat()<<8;

mov r0,r0,lsl #8

ldrb r1,[r7,#0x10] ;id |= RdNFDat();

orr r5,r1,r0

ldr r0,[r7,#4] ;NFChipDs();

orr r0,r0,#2

str r0,[r7,#4]

mov pc,lr //调用返回

ReadNandStatus

mov r7,#NFCONF

ldr r0,[r7,#4] ;NFChipEn();

bic r0,r0,#2

str r0,[r7,#4]

mov r0,#0x70 ;WrNFCmd(QUERYCMD);

strb r0,[r7,#8]

ldrb r1,[r7,#0x10] ;r1 = RdNFDat();

ldr r0,[r7,#4] ;NFChipDs();

orr r0,r0,#2

str r0,[r7,#4]

mov pc,lr

WaitNandBusy

mov r0,#0x70 ;WrNFCmd(QUERYCMD);

mov r1,#NFCONF

strb r0,[r1,#8]

1 ;while(!(RdNFDat()&0x40));

ldrb r0,[r1,#0x10]

tst r0,#0x40

beq %B1

mov r0,#0 ;WrNFCmd(READCMD0);

strb r0,[r1,#8]

mov pc,lr

CheckBadBlk

mov r7, lr

mov r5, #NFCONF

bic r0,r0,#0x1f ;addr &= ~0x1f;

ldr r1,[r5,#4] ;NFChipEn()

bic r1,r1,#2

str r1,[r5,#4]

mov r1,#0x50 ;WrNFCmd(READCMD2)

strb r1,[r5,#8]

mov r1, #5;6 ;6->5

strb r1,[r5,#0xc] ;WrNFAddr(5);(6) 6->5

strb r0,[r5,#0xc] ;WrNFAddr(addr)

mov r1,r0,lsr #8 ;WrNFAddr(addr>>8)

strb r1,[r5,#0xc]

cmp r6,#0 ;if(NandAddr)

movne r0,r0,lsr #16 ;WrNFAddr(addr>>16)

strneb r0,[r5,#0xc]

; bl WaitNandBusy ;WaitNFBusy()

;do not use WaitNandBusy, after WaitNandBusy will read part A!

mov r0, #100

1

subs r0, r0, #1

bne %B1

2

ldr r0, [r5, #0x20]

tst r0, #1

beq %B2

ldrb r0, [r5,#0x10] ;RdNFDat()

sub r0, r0, #0xff

mov r1,#0 ;WrNFCmd(READCMD0)

strb r1,[r5,#8]

ldr r1,[r5,#4] ;NFChipDs()

orr r1,r1,#2

str r1,[r5,#4]

mov pc, r7

ReadNandPage

mov r7,lr

mov r4,r1

mov r5,#NFCONF

ldr r1,[r5,#4] ;NFChipEn()

bic r1,r1,#2

str r1,[r5,#4]

mov r1,#0 ;WrNFCmd(READCMD0)

strb r1,[r5,#8]

strb r1,[r5,#0xc] ;WrNFAddr(0)

strb r0,[r5,#0xc] ;WrNFAddr(addr)

mov r1,r0,lsr #8 ;WrNFAddr(addr>>8)

strb r1,[r5,#0xc]

cmp r6,#0 ;if(NandAddr)

movne r0,r0,lsr #16 ;WrNFAddr(addr>>16)

strneb r0,[r5,#0xc]

ldr r0,[r5,#4] ;InitEcc()

orr r0,r0,#0x10

str r0,[r5,#4]

bl WaitNandBusy ;WaitNFBusy()

mov r0,#0 ;for(i=0; i<512; i++)

1

ldrb r1,[r5,#0x10] ;buf[i] = RdNFDat()

strb r1,[r4,r0]

add r0,r0,#1

bic r0,r0,#0x10000

cmp r0,#0x200

bcc %B1

ldr r0,[r5,#4] ;NFChipDs()

orr r0,r0,#2

str r0,[r5,#4]

mov pc,r7

]

;===========================================================

LTORG

;GCS0->SST39VF1601

;GCS1->16c550

;GCS2->IDE

;GCS3->CS8900

;GCS4->DM9000

;GCS5->CF Card

;GCS6->SDRAM

;GCS7->unused

SMRDATA DATA

; Memory configuration should be optimized for best performance

; The following parameter is not optimized.

; Memory access cycle parameter strategy

; 1) The memory settings is safe parameters even at HCLK=75Mhz.

; 2) SDRAM refresh period is for HCLK<=75Mhz.

DCD (0+(B1_BWSCON<<4)+(B2_BWSCON<<8)+(B3_BWSCON<<12)+(B4_BWSCON<<16)+(B5_BWSCON<<20)+

(B6_BWSCON<<24)+(B7_BWSCON<<28))

DCD ((B0_Tacs<<13)+(B0_Tcos<<11)+(B0_Tacc<<8)+(B0_Tcoh<<6)+(B0_Tah<<4)+(B0_Tacp<<2)+

(B0_PMC)) ;GCS0

DCD ((B1_Tacs<<13)+(B1_Tcos<<11)+(B1_Tacc<<8)+(B1_Tcoh<<6)+(B1_Tah<<4)+(B1_Tacp<<2)+

(B1_PMC)) ;GCS1

DCD ((B2_Tacs<<13)+(B2_Tcos<<11)+(B2_Tacc<<8)+(B2_Tcoh<<6)+(B2_Tah<<4)+(B2_Tacp<<2)+

(B2_PMC)) ;GCS2

DCD ((B3_Tacs<<13)+(B3_Tcos<<11)+(B3_Tacc<<8)+(B3_Tcoh<<6)+(B3_Tah<<4)+(B3_Tacp<<2)+

(B3_PMC)) ;GCS3

DCD ((B4_Tacs<<13)+(B4_Tcos<<11)+(B4_Tacc<<8)+(B4_Tcoh<<6)+(B4_Tah<<4)+(B4_Tacp<<2)+

(B4_PMC)) ;GCS4

DCD ((B5_Tacs<<13)+(B5_Tcos<<11)+(B5_Tacc<<8)+(B5_Tcoh<<6)+(B5_Tah<<4)+(B5_Tacp<<2)+

(B5_PMC)) ;GCS5

DCD ((B6_MT<<15)+(B6_Trcd<<2)+(B6_SCAN)) ;GCS6

DCD ((B7_MT<<15)+(B7_Trcd<<2)+(B7_SCAN)) ;GCS7

DCD ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Tsrc<<18)+(Tchr<<16)+REFCNT)

DCD 0x32 ;SCLK power saving mode, BANKSIZE 128M/128M

DCD 0x30 ;MRSR6 CL=3clk

DCD 0x30 ;MRSR7 CL=3clk

BaseOfROM DCD |Image$$RO$$Base|

TopOfROM DCD |Image$$RO$$Limit|

BaseOfBSS DCD |Image$$RW$$Base|

BaseOfZero DCD |Image$$ZI$$Base|

EndOfBSS DCD |Image$$ZI$$Limit|

ALIGN

;Function for entering power down mode

; 1. SDRAM should be in self-refresh mode.

; 2. All interrupt should be maksked for SDRAM/DRAM self-refresh.

; 3. LCD controller should be disabled for SDRAM/DRAM self-refresh.

; 4. The I-cache may have to be turned on.

; 5. The location of the following code may have not to be changed.

;void EnterPWDN(int CLKCON);

EnterPWDN

mov r2,r0 ;r2=rCLKCON

tst r0,#0x8 ;SLEEP mode?

bne ENTER_SLEEP

ENTER_STOP

ldr r0,=REFRESH

ldr r3,[r0] ;r3=rREFRESH

mov r1, r3

orr r1, r1, #BIT_SELFREFRESH

str r1, [r0] ;Enable SDRAM self-refresh

mov r1,#16 ;wait until self-refresh is issued. may not be needed.

0 subs r1,r1,#1

bne %B0

ldr r0,=CLKCON ;enter STOP mode.

str r2,[r0]

mov r1,#32

0 subs r1,r1,#1 ;1) wait until the STOP mode is in effect.

bne %B0 ;2) Or wait here until the CPU&Peripherals will be turned-off

; Entering SLEEP mode, only the reset by wake-up is available.

ldr r0,=REFRESH ;exit from SDRAM self refresh mode.

str r3,[r0]

MOV_PC_LR

ENTER_SLEEP

;NOTE.

;1) rGSTATUS3 should have the return address after wake-up from SLEEP mode.

ldr r0,=REFRESH

ldr r1,[r0] ;r1=rREFRESH

orr r1, r1, #BIT_SELFREFRESH

str r1, [r0] ;Enable SDRAM self-refresh

mov r1,#16 ;Wait until self-refresh is issued,which may not be

needed.

0 subs r1,r1,#1

bne %B0

ldr r1,=MISCCR

ldr r0,[r1]

orr r0,r0,#(7<<17) ;Set SCLK0=0, SCLK1=0, SCKE=0.

str r0,[r1]

ldr r0,=CLKCON ; Enter sleep mode

str r2,[r0]

b . ;CPU will die here.

WAKEUP_SLEEP

;Release SCLKn after wake-up from the SLEEP mode.

ldr r1,=MISCCR

ldr r0,[r1]

bic r0,r0,#(7<<17) ;SCLK0:0->SCLK, SCLK1:0->SCLK, SCKE:0->=SCKE.

str r0,[r1]

;Set memory control registers

ldr r0,=SMRDATA ;be careful!

ldr r1,=BWSCON ;BWSCON Address

add r2, r0, #52 ;End address of SMRDATA

0

ldr r3, [r0], #4

str r3, [r1], #4

cmp r2, r0

bne %B0

mov r1,#256

0 subs r1,r1,#1 ;1) wait until the SelfRefresh is released.

bne %B0

ldr r1,=GSTATUS3 ;GSTATUS3 has the start address just after SLEEP wake-up

ldr r0,[r1]

mov pc,r0

;=====================================================================

; Clock division test

; Assemble code, because VSYNC time is very short

;=====================================================================

EXPORT CLKDIV124

EXPORT CLKDIV144

CLKDIV124

ldr r0, = CLKDIVN

ldr r1, = 0x3 ; 0x3 = 1:2:4

str r1, [r0]

; wait until clock is stable

nop

nop

nop

nop

nop

ldr r0, = REFRESH

ldr r1, [r0]

bic r1, r1, #0xff

bic r1, r1, #(0x7<<8)

orr r1, r1, #0x470 ; REFCNT135

str r1, [r0]

nop

nop

nop

nop

nop

mov pc, lr

CLKDIV144

ldr r0, = CLKDIVN

ldr r1, = 0x4 ; 0x4 = 1:4:4

str r1, [r0]

; wait until clock is stable

nop

nop

nop

nop

nop

ldr r0, = REFRESH

ldr r1, [r0]

bic r1, r1, #0xff

bic r1, r1, #(0x7<<8)

orr r1, r1, #0x630 ; REFCNT675 - 1520

str r1, [r0]

nop

nop

nop

nop

nop

mov pc, lr

ALIGN

AREA RamData, DATA, READWRITE

^ _ISR_STARTADDRESS ; _ISR_STARTADDRESS=0x33FF_FF00

HandleReset # 4

HandleUndef # 4

HandleSWI # 4

HandlePabort # 4

HandleDabort # 4

HandleReserved # 4

HandleIRQ # 4

HandleFIQ # 4

;Do not use the label 'IntVectorTable',

;The value of IntVectorTable is different with the address you think it may be.

;IntVectorTable

;@0x33FF_FF20

HandleEINT0 # 4

HandleEINT1 # 4

HandleEINT2 # 4

HandleEINT3 # 4

HandleEINT4_7 # 4

HandleEINT8_23 # 4

HandleCAM # 4 ; Added for 2440.

HandleBATFLT # 4

HandleTICK # 4

HandleWDT # 4

HandleTIMER0 # 4

HandleTIMER1 # 4

HandleTIMER2 # 4

HandleTIMER3 # 4

HandleTIMER4 # 4

HandleUART2 # 4

;@0x33FF_FF60

HandleLCD # 4

HandleDMA0 # 4

HandleDMA1 # 4

HandleDMA2 # 4

HandleDMA3 # 4

HandleMMC # 4

HandleSPI0 # 4

HandleUART1 # 4

HandleNFCON # 4 ; Added for 2440.

HandleUSBD # 4

HandleUSBH # 4

HandleIIC # 4

HandleUART0 # 4

HandleSPI1 # 4

HandleRTC # 4

HandleADC # 4

;@0x33FF_FFA0

END
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: