您的位置:首页 > 其它

V4L2用户空间和kernel层driver的交互过程

2013-12-19 10:13 741 查看
这篇文章详细分析了V4L2用户空间和kernel层driver的交互过程,目的只有一个:

更清晰的理解V4L2视频驱动程序的系统结构,驱动编程方法,为以后开发视频驱动打好基础



既然从用户层出发探究驱动层,这里先贴出应用层code:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <assert.h>

#include <getopt.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <sys/time.h>

#include <sys/mman.h>

#include <sys/ioctl.h>

#include <asm/types.h>

#include <linux/videodev2.h>

#include <linux/fb.h>

#define CLEAR(x) memset (&(x), 0, sizeof (x))

struct buffer {

void * start;

size_t length;

};

static char * dev_name = NULL;

static int fd = -1;

struct buffer * buffers = NULL;

static unsigned int n_buffers = 0;

static int time_in_sec_capture=5;

static int fbfd = -1;

static struct fb_var_screeninfo vinfo;

static struct fb_fix_screeninfo finfo;

static char *fbp=NULL;

static long screensize=0;

static void errno_exit (const char * s)

{

fprintf (stderr, "%s error %d, %s/n",s, errno, strerror (errno));

exit (EXIT_FAILURE);

}

static int xioctl (int fd,int request,void * arg)

{

int r;

/* Here use this method to make sure cmd success*/

do r = ioctl (fd, request, arg);

while (-1 == r && EINTR == errno);

return r;

}

inline int clip(int value, int min, int max) {

return (value > max ? max : value < min ? min : value);

}

static void process_image (const void * p){

//ConvertYUVToRGB321;

unsigned char* in=(char*)p;

int width=640;

int height=480;

int istride=1280;

int x,y,j;

int y0,u,y1,v,r,g,b;

long location=0;

for ( y = 100; y < height + 100; ++y) {

for (j = 0, x=100; j < width * 2 ; j += 4,x +=2) {

location = (x+vinfo.xoffset) * (vinfo.bits_per_pixel/8) +

(y+vinfo.yoffset) * finfo.line_length;

y0 = in[j];

u = in[j + 1] - 128;

y1 = in[j + 2];

v = in[j + 3] - 128;

r = (298 * y0 + 409 * v + 128) >> 8;

g = (298 * y0 - 100 * u - 208 * v + 128) >> 8;

b = (298 * y0 + 516 * u + 128) >> 8;

fbp[ location + 0] = clip(b, 0, 255);

fbp[ location + 1] = clip(g, 0, 255);

fbp[ location + 2] = clip(r, 0, 255);

fbp[ location + 3] = 255;

r = (298 * y1 + 409 * v + 128) >> 8;

g = (298 * y1 - 100 * u - 208 * v + 128) >> 8;

b = (298 * y1 + 516 * u + 128) >> 8;

fbp[ location + 4] = clip(b, 0, 255);

fbp[ location + 5] = clip(g, 0, 255);

fbp[ location + 6] = clip(r, 0, 255);

fbp[ location + 7] = 255;

}

in +=istride;

}

}

static int read_frame (void)

{

struct v4l2_buffer buf;

unsigned int i;

CLEAR (buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

buf.memory = V4L2_MEMORY_MMAP;

/* 11. VIDIOC_DQBUF把数据放回缓存队列*/

if (-1 == xioctl (fd, VIDIOC_DQBUF, &buf)) {

switch (errno) {

case EAGAIN:

return 0;

case EIO:

default:

errno_exit ("VIDIOC_DQBUF");

}

}

assert (buf.index < n_buffers);

printf("v4l2_pix_format->field(%d)/n", buf.field);

//assert (buf.field ==V4L2_FIELD_NONE);

process_image (buffers[buf.index].start);

/*12. VIDIOC_QBUF把数据从缓存中读取出来*/

if (-1 == xioctl (fd, VIDIOC_QBUF, &buf))

errno_exit ("VIDIOC_QBUF");

return 1;

}

static void run (void)

{

unsigned int count;

int frames;

frames = 30 * time_in_sec_capture;

while (frames-- > 0) {

for (;;) {

fd_set fds;

struct timeval tv;

int r;

FD_ZERO (&fds);

FD_SET (fd, &fds);

tv.tv_sec = 2;

tv.tv_usec = 0;

/* 10. poll
method*/

r = select (fd + 1, &fds, NULL, NULL, &tv);

if (-1 == r) {

if (EINTR == errno)

continue;

errno_exit ("select");

}

if (0 == r) {

fprintf (stderr, "select timeout/n");

exit (EXIT_FAILURE);

}

if (read_frame())

break;

}

}

}

static void stop_capturing (void)

{

enum v4l2_buf_type type;

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

/*13. VIDIOC_STREAMOFF结束视频显示函数*/

if (-1 == xioctl (fd, VIDIOC_STREAMOFF, &type))

errno_exit ("VIDIOC_STREAMOFF");

}

static void start_capturing (void)

{

unsigned int i;

enum v4l2_buf_type type;

for (i = 0; i < n_buffers; ++i) {

struct v4l2_buffer buf;

CLEAR (buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

buf.memory = V4L2_MEMORY_MMAP;

buf.index = i;

/* 8. VIDIOC_QBUF把数据从缓存中读取出来*/

if (-1 == xioctl (fd, VIDIOC_QBUF, &buf))

errno_exit ("VIDIOC_QBUF");

}

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

/* 9. VIDIOC_STREAMON开始视频显示函数*/

if (-1 == xioctl (fd, VIDIOC_STREAMON, &type))

errno_exit ("VIDIOC_STREAMON");

}

static void uninit_device (void)

{

unsigned int i;

for (i = 0; i < n_buffers; ++i)

if (-1 == munmap (buffers[i].start, buffers[i].length))

errno_exit ("munmap");

if (-1 == munmap(fbp, screensize)) {

printf(" Error: framebuffer device munmap() failed./n");

exit (EXIT_FAILURE) ;

}

free (buffers);

}

static void init_mmap (void)

{

struct v4l2_requestbuffers req;

//mmap framebuffer

fbp = (char *)mmap(NULL,screensize,PROT_READ | PROT_WRITE,MAP_SHARED ,fbfd, 0);

if ((int)fbp == -1) {

printf("Error: failed to map framebuffer device to memory./n");

exit (EXIT_FAILURE) ;

}

memset(fbp, 0, screensize);

CLEAR (req);

req.count = 4;

req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

req.memory = V4L2_MEMORY_MMAP;

/* 6. VIDIOC_REQBUFS分配内存*/

if (-1 == xioctl (fd, VIDIOC_REQBUFS, &req)) {

if (EINVAL == errno) {

fprintf (stderr, "%s does not support memory mapping/n", dev_name);

exit (EXIT_FAILURE);

} else {

errno_exit ("VIDIOC_REQBUFS");

}

}

if (req.count < 4) {

fprintf (stderr, "Insufficient buffer memory on %s/n",dev_name);

exit (EXIT_FAILURE);

}

buffers = calloc (req.count, sizeof (*buffers));

if (!buffers) {

fprintf (stderr, "Out of memory/n");

exit (EXIT_FAILURE);

}

for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {

struct v4l2_buffer buf;

CLEAR (buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

buf.memory = V4L2_MEMORY_MMAP;

buf.index = n_buffers;

/* 7. VIDIOC_QUERYBUF把VIDIOC_REQBUFS中分配的数据缓存转换成物理地址*/

if (-1 == xioctl (fd, VIDIOC_QUERYBUF, &buf))

errno_exit ("VIDIOC_QUERYBUF");

buffers[n_buffers].length = buf.length;

buffers[n_buffers].start =mmap (NULL,buf.length,PROT_READ | PROT_WRITE ,MAP_SHARED,fd, buf.m.offset);

if (MAP_FAILED == buffers[n_buffers].start)

errno_exit ("mmap");

}

}

static void init_device (void)

{

struct v4l2_capability cap;

struct v4l2_cropcap cropcap;

struct v4l2_crop crop;

struct v4l2_format fmt;

unsigned int min;

// Get fixed screen information

if (-1==xioctl(fbfd, FBIOGET_FSCREENINFO, &finfo)) {

printf("Error reading fixed information./n");

exit (EXIT_FAILURE);

}

// Get variable screen information

if (-1==xioctl(fbfd, FBIOGET_VSCREENINFO, &vinfo)) {

printf("Error reading variable information./n");

exit (EXIT_FAILURE);

}

screensize = vinfo.xres * vinfo.yres * vinfo.bits_per_pixel / 8;

/* 2. VIDIOC_QUERYCAP查询驱动功能*/

if (-1 == xioctl (fd, VIDIOC_QUERYCAP, &cap)) {

if (EINVAL == errno) {

fprintf (stderr, "%s is no V4L2 device/n",dev_name);

exit (EXIT_FAILURE);

} else {

errno_exit ("VIDIOC_QUERYCAP");

}

}

/* Check if it is a
video capture device*/

if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {

fprintf (stderr, "%s is no video capture device/n",dev_name);

exit (EXIT_FAILURE);

}

/* Check if support streaming I/O
ioctls*/

if (!(cap.capabilities & V4L2_CAP_STREAMING)) {

fprintf (stderr, "%s does not support streaming i/o/n",dev_name);

exit (EXIT_FAILURE);

}

CLEAR (cropcap);

/* Set type*/

cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

/* 3. VIDIOC_CROPCAP查询驱动的修剪能力*/

/* 这里在vivi驱动中我们没有实现此方法,即不支持此操作*/

if (0 == xioctl (fd, VIDIOC_CROPCAP, &cropcap)) {

crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

crop.c = cropcap.defrect;

/* 4. VIDIOC_S_CROP设置视频信号的边框*/

/* 同样不支持这个操作*/

if (-1 == xioctl (fd, VIDIOC_S_CROP, &crop)) {

switch (errno) {

case EINVAL:

break;

default:

break;

}

}

}else { }

CLEAR (fmt);

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

fmt.fmt.pix.width = 640;

fmt.fmt.pix.height = 480;

fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;

fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;

/* 5. VIDIOC_S_FMT设置当前驱动的频捕获格式*/

if (-1 == xioctl (fd, VIDIOC_S_FMT, &fmt))

errno_exit ("VIDIOC_S_FMT");

init_mmap ();

}

static void close_device (void)

{

if (-1 == close (fd))

errno_exit ("close");

fd = -1;

/*14. close
method*/

close(fbfd);

}

static void open_device (void)

{

struct stat st;

if (-1 == stat (dev_name, &st)) {

fprintf (stderr, "Cannot identify '%s': %d, %s/n",dev_name, errno, strerror (errno));

exit (EXIT_FAILURE);

}

if (!S_ISCHR (st.st_mode)) {

fprintf (stderr, "%s is no device/n", dev_name);

exit (EXIT_FAILURE);

}

fbfd = open("/dev/fb0", O_RDWR);

if (fbfd==-1) {

printf("Error: cannot open framebuffer device./n");

exit (EXIT_FAILURE);

}

/* 1. open
the char device */

fd = open (dev_name, O_RDWR| O_NONBLOCK, 0);

if (-1 == fd) {

fprintf (stderr, "Cannot open '%s': %d, %s/n",dev_name, errno, strerror (errno));

exit (EXIT_FAILURE);

}

}

static void usage (FILE * fp,int argc,char ** argv)

{

fprintf (fp,

"Usage: %s [options]/n/n"

"Options:/n"

"-d | --device name Video device name [/dev/video]/n"

"-h | --help Print this message/n"

"-t | --how long will display in seconds/n"

"",

argv[0]);

}

static const char short_options [] = "d:ht:";

static const struct option long_options [] = {

{ "device", required_argument, NULL, 'd' },

{ "help", no_argument, NULL, 'h' },

{ "time", no_argument, NULL, 't' },

{ 0, 0, 0, 0 }

};

int main (int argc,char ** argv)

{

dev_name = "/dev/video0";

for (;;)

{

int index;

int c;

c = getopt_long (argc, argv,short_options, long_options,&index);

if (-1 == c)

break;

switch (c) {

case 0:

break;

case 'd':

dev_name = optarg;

break;

case 'h':

usage (stdout, argc, argv);

exit (EXIT_SUCCESS);

case 't':

time_in_sec_capture = atoi(optarg);

break;

default:

usage (stderr, argc, argv);

exit (EXIT_FAILURE);

}

}

open_device();

init_device();

start_capturing();

run();

stop_capturing();

uninit_device();

close_device();

exit(EXIT_SUCCESS);

return 0;

}

上面code中我已经标注出程序顺序指向的步骤1--14步,下面将一一说明应用从做这14步时驱动层是怎样响应,变化过程,驱动加载初始化部分上一篇文章已经说过了

正式开始取经之路哇。。。。



。。。

STEP 1:

fd = open (dev_name, O_RDWR| O_NONBLOCK, 0);

打开字符设备,这个字符设备是video_device_register时创建的,code在v4l2_dev.c中,具体:

static int v4l2_open(struct inode *inode, struct
file *filp)

{

struct video_device *vdev;

int ret = 0;

/* Check if the video device is available */

mutex_lock(&videodev_lock);

vdev = video_devdata(filp);

/* return ENODEV if the video device has already been removed. */

if (vdev == NULL || !video_is_registered(vdev)) {

mutex_unlock(&videodev_lock);

return -ENODEV;

}

/* and increase the device refcount */

video_get(vdev);

mutex_unlock(&videodev_lock);

/*

* Here using the API you get the method you get the open() method
write

* The other methods in fops use the same method to use you own code

*/

if (vdev->fops->open) {

if (vdev->lock && mutex_lock_interruptible(vdev->lock)) {

ret = -ERESTARTSYS;

goto err;

}

if (video_is_registered(vdev))

ret = vdev->fops->open(filp);

else

ret = -ENODEV;

if (vdev->lock)

mutex_unlock(vdev->lock);

}

err:

/* decrease the refcount in case of
an error */

if (ret)

video_put(vdev);

return ret;

}

重点在标注部分,通过这个V4L2的API调用我们自己驱动程序中定义的open方法,我们自己的open方法所属的fops是在vivi.c驱动程序的vivi_create_instance方法中video_device_register之前关联进来的

int v4l2_fh_open(struct file *filp)

{

struct video_device *vdev = video_devdata(filp);

struct v4l2_fh *fh = kzalloc(sizeof(*fh), GFP_KERNEL);

/*

* IN the open method, do only
one job

* set v4l2_fh into filp->private_data for later
use, and initial v4l2_fh

*/

filp->private_data = fh;

if (fh == NULL)

return -ENOMEM;

v4l2_fh_init(fh, vdev);

v4l2_fh_add(fh);

return 0;

}

EXPORT_SYMBOL_GPL(v4l2_fh_open);

这个open方法只是初始化了一个v4l2_fh,并关联到filp->private中,方便以后使用

这里设置V4L2_FL_USES_V4L2_FH这个标志位,设置优先级为UNSET,如果我们的自己驱动程序实现了,支持

VIDIOC_SUBSCRIBE_EVENT,那么v4l2_event_init,在events初始化中初始化链表,并设置sequence为-1,如果不支持,则设置fh->events为NULL

最后add list

STEP 2:

if (-1 == xioctl (fd, VIDIOC_QUERYCAP, &cap))

这么调用完成下面过程,不行的从驱动层获取cap。直到成功拿到我们想要的数据

static int xioctl (int fd,int request,void * arg)

{

int r;

/* Here use this method to make sure cmd success*/

do r = ioctl (fd, request, arg);

while (-1 == r && EINTR == errno);

return r;

}

也就是调用驱动层的ioctl方法,从v4l2 api中的ictol 调用我们自己定义的ioctl ,这中间的过程不在多做说明,我们自己的驱动的控制过程由v4l2_ioctl.c这个文件中的方法实现,一个很庞大的switch

值得一提的是,慢慢后面你会明白的,这里v4l2_ioctl.c这个文件中的方法实现其实只是会中转站,它接着就回调了我们自己驱动程序中定义的控制接口,后面再说吧

long video_ioctl2(struct file *file,

unsigned int cmd, unsigned long arg)

{

return video_usercopy(file, cmd, arg, __video_do_ioctl);

}

这里这个__video_do_ioctl方法其实完全做了我们所有的控制过程,又为什么又要经过video_usercopy这个方法呢,不妨看一看这个方法

long

video_usercopy(struct file *file, unsigned int cmd, unsigned
long arg,

v4l2_kioctl func)

{

char sbuf[128];

void *mbuf = NULL;

void *parg = (void *)arg;

long err = -EINVAL;

bool has_array_args;

size_t array_size = 0;

void __user *user_ptr = NULL;

void **kernel_ptr = NULL;

/* Copy arguments into temp kernel buffer */

if (_IOC_DIR(cmd) != _IOC_NONE) {

........这里检查128个字节的大小是否够存放用户端发送来的数据,不够则需要重新申请一个新的内存用来存放,指向parg这个地址

if (_IOC_SIZE(cmd) <= sizeof(sbuf)) {

parg = sbuf;

} else {

/* too big to allocate from stack */

mbuf = kmalloc(_IOC_SIZE(cmd), GFP_KERNEL);

if (NULL == mbuf)

return -ENOMEM;

parg = mbuf;

}

err = -EFAULT;

if (_IOC_DIR(cmd) & _IOC_WRITE) {

unsigned long n = cmd_input_size(cmd);

if (copy_from_user(parg, (void
__user *)arg, n))

goto out;

/* zero out anything we don't copy from userspace */

if (n < _IOC_SIZE(cmd))

memset((u8 *)parg + n, 0, _IOC_SIZE(cmd) - n);

} else {

/* read-only ioctl */

memset(parg, 0, _IOC_SIZE(cmd));

}

}

....check

err = check_array_args(cmd, parg, &array_size, &user_ptr, &kernel_ptr);

if (err < 0)

goto out;

has_array_args = err;

....这里这块如果用户端有数据写到kernel,这里负责数据拷贝

if (has_array_args) {

/*

* When adding new types of array args, make sure that the

* parent argument to ioctl (which contains the pointer to the

* array) fits into sbuf (so
that mbuf will still remain

* unused up to here).

*/

mbuf = kmalloc(array_size, GFP_KERNEL);

err = -ENOMEM;

if (NULL == mbuf)

goto out_array_args;

err = -EFAULT;

if (copy_from_user(mbuf, user_ptr, array_size))

goto out_array_args;

*kernel_ptr = mbuf;

}

/* Handles IOCTL */

err = func(file, cmd, parg);

if (err == -ENOIOCTLCMD)

err = -EINVAL;

if (has_array_args) {

*kernel_ptr = user_ptr;

if (copy_to_user(user_ptr, mbuf, array_size))

err = -EFAULT;

goto out_array_args;

}

if (err < 0)

goto out;

out_array_args:

/* Copy
results into user buffer */

switch (_IOC_DIR(cmd)) {

case _IOC_READ:

case (_IOC_WRITE | _IOC_READ):

if (copy_to_user((void
__user *)arg, parg, _IOC_SIZE(cmd)))

err = -EFAULT;

break;

}

out:

kfree(mbuf);

return err;

}

EXPORT_SYMBOL(video_usercopy);

自我感觉这个方法还是有很多精妙之处的,主要的控制过程是在我标注的地方调用完成的,这个调用之前做check动作,检查用户端发来的命令是否合法,

最重要的是把用户端的数据copy到kernel 端;而这个调用之后,则是我们处理完我们的动作之后,我们在这里吧用户端请求的数据从kernel 端copy到用户端

这样做的好处是显而易见的,任务明确,控制只做控制,用户空间和kernel空间数据的copy在所有控制之前,控制之后进行

以上动作做完之后,进入庞大的控制中枢,这来开始至贴出具体到某一个控制的代码,否则code过大,不易分析:

case VIDIOC_QUERYCAP://查询视频设备的功能

{

struct v4l2_capability *cap = (struct v4l2_capability *)arg;

if (!ops->vidioc_querycap)

break;

ret = ops->vidioc_querycap(file, fh, cap);

if (!ret)/* i
don't think here need to check */

dbgarg(cmd, "driver=%s, card=%s, bus=%s, "

"version=0x%08x, "

"capabilities=0x%08x\n",

cap->driver, cap->card, cap->bus_info,

cap->version,

cap->capabilities);

break;

}

这来调用了我们自己驱动中填充的v4l2_ioctl_ops结构体,从这里开始,我上面说到的话得到了验证,这就是linux 中API 的强大之处

作为中间层的这个控制中枢又回调驱动自己定义编写的控制

/* ------------------------------------------------------------------

IOCTL vidioc handling

------------------------------------------------------------------*/

static int vidioc_querycap(struct file *file, void *priv,

struct v4l2_capability *cap)

{

struct vivi_dev *dev = video_drvdata(file);

strcpy(cap->driver, "vivi");

strcpy(cap->card, "vivi");

strlcpy(cap->bus_info, dev->v4l2_dev.name, sizeof(cap->bus_info));

cap->version = VIVI_VERSION;

cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING | \

V4L2_CAP_READWRITE;

return 0;

}

这来做的事情很简单,只是将配置信息保存到cap这个变量中,之后上传给用户空间

STEP 3:

/* 3. VIDIOC_CROPCAP查询驱动的修剪能力*/

/* 这里在vivi 驱动中我们没有实现此方法,即不支持此操作*/

if (0 == xioctl (fd, VIDIOC_CROPCAP, &cropcap))

这个判断在中间层控制中枢中进行的,check到我们自己的驱动中没有这个控制功能的支持

所以这里的STEP
4同样不会进行

STEP 5:

/* 5. VIDIOC_S_FMT设置当前驱动的频捕获格式*/

if (-1 == xioctl (fd, VIDIOC_S_FMT, &fmt))

对应到控制中心是这样的

case VIDIOC_S_FMT:

{

struct v4l2_format *f = (struct v4l2_format *)arg;

/* FIXME: Should be one dump per type */

dbgarg(cmd, "type=%s\n", prt_names(f->type, v4l2_type_names));

switch (f->type) {

case V4L2_BUF_TYPE_VIDEO_CAPTURE:

CLEAR_AFTER_FIELD(f, fmt.pix);

v4l_print_pix_fmt(vfd, &f->fmt.pix);

if (ops->vidioc_s_fmt_vid_cap) {

ret = ops->vidioc_s_fmt_vid_cap(file, fh, f);

} else if (ops->vidioc_s_fmt_vid_cap_mplane) {

if (fmt_sp_to_mp(f, &f_copy))

break;

ret = ops->vidioc_s_fmt_vid_cap_mplane(file, fh,

&f_copy);

if (ret)

break;

if (f_copy.fmt.pix_mp.num_planes > 1) {

/* Drivers shouldn't adjust from 1-plane

* to more than 1-plane formats */

ret = -EBUSY;

WARN_ON(1);

break;

}

ret = fmt_mp_to_sp(&f_copy, f);

}

break;

case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:

CLEAR_AFTER_FIELD(f, fmt.pix_mp);

v4l_print_pix_fmt_mplane(vfd, &f->fmt.pix_mp);

if (ops->vidioc_s_fmt_vid_cap_mplane) {

ret = ops->vidioc_s_fmt_vid_cap_mplane(file,

fh, f);

} else if (ops->vidioc_s_fmt_vid_cap &&

f->fmt.pix_mp.num_planes == 1) {

if (fmt_mp_to_sp(f, &f_copy))

break;

ret = ops->vidioc_s_fmt_vid_cap(file,

fh, &f_copy);

if (ret)

break;

ret = fmt_sp_to_mp(&f_copy, f);

}

break;

case V4L2_BUF_TYPE_VIDEO_OVERLAY:

CLEAR_AFTER_FIELD(f, fmt.win);

if (ops->vidioc_s_fmt_vid_overlay)

ret = ops->vidioc_s_fmt_vid_overlay(file,

fh, f);

break;

case V4L2_BUF_TYPE_VIDEO_OUTPUT:

CLEAR_AFTER_FIELD(f, fmt.pix);

v4l_print_pix_fmt(vfd, &f->fmt.pix);

if (ops->vidioc_s_fmt_vid_out) {

ret = ops->vidioc_s_fmt_vid_out(file, fh, f);

} else if (ops->vidioc_s_fmt_vid_out_mplane) {

if (fmt_sp_to_mp(f, &f_copy))

break;

ret = ops->vidioc_s_fmt_vid_out_mplane(file, fh,

&f_copy);

if (ret)

break;

if (f_copy.fmt.pix_mp.num_planes > 1) {

/* Drivers shouldn't adjust from 1-plane

* to more than 1-plane formats */

ret = -EBUSY;

WARN_ON(1);

break;

}

ret = fmt_mp_to_sp(&f_copy, f);

}

break;

case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:

CLEAR_AFTER_FIELD(f, fmt.pix_mp);

v4l_print_pix_fmt_mplane(vfd, &f->fmt.pix_mp);

if (ops->vidioc_s_fmt_vid_out_mplane) {

ret = ops->vidioc_s_fmt_vid_out_mplane(file,

fh, f);

} else if (ops->vidioc_s_fmt_vid_out &&

f->fmt.pix_mp.num_planes == 1) {

if (fmt_mp_to_sp(f, &f_copy))

break;

ret = ops->vidioc_s_fmt_vid_out(file,

fh, &f_copy);

if (ret)

break;

ret = fmt_mp_to_sp(&f_copy, f);

}

break;

case V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY:

CLEAR_AFTER_FIELD(f, fmt.win);

if (ops->vidioc_s_fmt_vid_out_overlay)

ret = ops->vidioc_s_fmt_vid_out_overlay(file,

fh, f);

break;

case V4L2_BUF_TYPE_VBI_CAPTURE:

CLEAR_AFTER_FIELD(f, fmt.vbi);

if (ops->vidioc_s_fmt_vbi_cap)

ret = ops->vidioc_s_fmt_vbi_cap(file, fh, f);

break;

case V4L2_BUF_TYPE_VBI_OUTPUT:

CLEAR_AFTER_FIELD(f, fmt.vbi);

if (ops->vidioc_s_fmt_vbi_out)

ret = ops->vidioc_s_fmt_vbi_out(file, fh, f);

break;

case V4L2_BUF_TYPE_SLICED_VBI_CAPTURE:

CLEAR_AFTER_FIELD(f, fmt.sliced);

if (ops->vidioc_s_fmt_sliced_vbi_cap)

ret = ops->vidioc_s_fmt_sliced_vbi_cap(file,

fh, f);

break;

case V4L2_BUF_TYPE_SLICED_VBI_OUTPUT:

CLEAR_AFTER_FIELD(f, fmt.sliced);

if (ops->vidioc_s_fmt_sliced_vbi_out)

ret = ops->vidioc_s_fmt_sliced_vbi_out(file,

fh, f);

break;

case V4L2_BUF_TYPE_PRIVATE:

/* CLEAR_AFTER_FIELD(f, fmt.raw_data); <- does nothing */

if (ops->vidioc_s_fmt_type_private)

ret = ops->vidioc_s_fmt_type_private(file,

fh, f);

break;

}

break;

}

以后根据不同的type 决定了我们自己驱动程序中不同的控制实现,这个type是根据用户空间的设置而定的,还包括其他几个参数,如下:

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

fmt.fmt.pix.width = 640;

fmt.fmt.pix.height = 480;

fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;

fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;

这里根据设定的type,所以驱动程序的处理过程如下:

static int vidioc_s_fmt_vid_cap(struct file *file, void *priv,

struct v4l2_format *f)

{

struct vivi_dev *dev = video_drvdata(file);

struct vb2_queue *q = &dev->vb_vidq;

....在下面这个函数中,做了一些试探性的动作,如果试探失败则下面不会赋值,试探通过则后续正常设置即可,在这个试探函数中同时做了一些设置动作

int ret = vidioc_try_fmt_vid_cap(file, priv, f);

if (ret < 0)

return ret;

if (vb2_is_streaming(q)) {

dprintk(dev, 1, "%s
device busy\n", __func__);

return -EBUSY;

}

....按用户空间需求设置

dev->fmt = get_format(f);

dev->width = f->fmt.pix.width;

dev->height = f->fmt.pix.height;

dev->field = f->fmt.pix.field;

return 0;

}

STEP6


/* 6. VIDIOC_REQBUFS分配内存*/

if (-1 == xioctl (fd, VIDIOC_REQBUFS, &req))

中间层控制中枢:

case VIDIOC_REQBUFS:

{

struct v4l2_requestbuffers *p = arg;

if (!ops->vidioc_reqbufs)

break;

........这个方法check 驱动必须实现了fmt方法,看具体看代码

ret = check_fmt(ops, p->type);

if (ret)

break;

if (p->type < V4L2_BUF_TYPE_PRIVATE)

CLEAR_AFTER_FIELD(p, memory);

ret = ops->vidioc_reqbufs(file, fh, p);

dbgarg(cmd, "count=%d, type=%s, memory=%s\n",

p->count,

prt_names(p->type, v4l2_type_names),

prt_names(p->memory, v4l2_memory_names));

break;

}

驱动中实现:

static int vidioc_reqbufs(struct file *file, void *priv,

struct v4l2_requestbuffers *p)

{

struct vivi_dev *dev = video_drvdata(file);

return vb2_reqbufs(&dev->vb_vidq, p);

}

到了这里来到了这个全新的话题,实现

vb2_reqbufs(&dev->vb_vidq, p);

这里暂且不讨论这个方法,相对较复杂,待日后研究,先把注释部分放到这里,包括其他内存操作,之后深入研究补充,专门作为一篇整理

/**

* Should be called from vidioc_reqbufs ioctl handler of a driver.

* This function:

* 1) verifies streaming parameters passed from the userspace,

* 2) sets up the queue,

* 3) negotiates number of buffers and planes per buffer with the driver to be used during streaming,

* 4) allocates internal buffer structures (struct vb2_buffer), according to the agreed parameters,

* 5) for MMAP memory type, allocates actual video memory, using the memory handling/allocation routines provided during queue initialization

* If req->count is 0, all the memory will be freed instead.

* If the queue has been allocated previously (by a previous vb2_reqbufs) call

* and the queue is not busy, memory will be reallocated.

* The return values from this function are intended to be directly returned from vidioc_reqbufs handler in driver.

*/

STEP 7:

/* 7. VIDIOC_QUERYBUF把VIDIOC_REQBUFS中分配的数据缓存转换成物理地址*/

if (-1 == xioctl (fd, VIDIOC_QUERYBUF, &buf))

中间层控制中枢:

case VIDIOC_QUERYBUF:

{

struct v4l2_buffer *p = arg;

if (!ops->vidioc_querybuf)

break;

ret = check_fmt(ops, p->type);

if (ret)

break;

ret = ops->vidioc_querybuf(file, fh, p);

if (!ret)

dbgbuf(cmd, vfd, p);

break;

}

驱动中控制实现:

static int vidioc_querybuf(struct file *file, void *priv, struct
v4l2_buffer *p)

{

struct vivi_dev *dev = video_drvdata(file);

return vb2_querybuf(&dev->vb_vidq, p);

}

/**

* Should be called from vidioc_querybuf ioctl handler in driver.

* This function will verify the passed v4l2_buffer structure and fill the

* relevant information for the userspace.

* The return values from this function are intended to be directly returned from vidioc_querybuf handler in driver.

*/

STEP 8:

/* 8. VIDIOC_QBUF把数据从缓存中读取出来*/

if (-1 == xioctl (fd, VIDIOC_QBUF, &buf))

中间层控制中枢:

case VIDIOC_QBUF:

{

struct v4l2_buffer *p = arg;

if (!ops->vidioc_qbuf)

break;

ret = check_fmt(ops, p->type);

if (ret)

break;

ret = ops->vidioc_qbuf(file, fh, p);

if (!ret)

dbgbuf(cmd, vfd, p);

break;

}

驱动中控制实现:

static int vidioc_qbuf(struct file *file, void *priv, struct
v4l2_buffer *p)

{

struct vivi_dev *dev = video_drvdata(file);

return vb2_qbuf(&dev->vb_vidq, p);

}

/**

* Should be called from vidioc_qbuf ioctl handler of a driver.

* This function:

* 1) verifies the passed buffer,

* 2) calls buf_prepare callback in the driver (if provided), in which driver-specific buffer initialization can be performed,

* 3) if streaming is on, queues the buffer in driver by the means of buf_queue callback for processing.

* The return values from this function are intended to be directly returned from vidioc_qbuf handler in driver.

*/

STEP 9:

/* 9. VIDIOC_STREAMON开始视频显示函数*/

if (-1 == xioctl (fd, VIDIOC_STREAMON, &type))

中间层控制中枢:

case VIDIOC_STREAMON:

{

enum v4l2_buf_type i = *(int *)arg;

if (!ops->vidioc_streamon)

break;

dbgarg(cmd, "type=%s\n", prt_names(i, v4l2_type_names));

ret = ops->vidioc_streamon(file, fh, i);

break;

}

驱动控制实现;

static int vidioc_streamon(struct file *file, void *priv, enum
v4l2_buf_type i)

{

struct vivi_dev *dev = video_drvdata(file);

return vb2_streamon(&dev->vb_vidq, i);

}

/**

* Should be called from vidioc_streamon handler of a driver.

* This function:

* 1) verifies current state

* 2) starts streaming and passes any previously queued buffers to the driver

* The return values from this function are intended to be directly returned from vidioc_streamon handler in the driver.

*/

STEP 10:

/* 10. poll method*/

select (fd + 1, &fds, NULL, NULL, &tv);

从V4L2驱动API开始:

static unsigned int v4l2_poll(struct file *filp, struct
poll_table_struct *poll)

{

struct video_device *vdev = video_devdata(filp);

int ret = POLLERR | POLLHUP;

if (!vdev->fops->poll)

return DEFAULT_POLLMASK;

if (vdev->lock)

mutex_lock(vdev->lock);

if (video_is_registered(vdev))

ret = vdev->fops->poll(filp, poll);

if (vdev->lock)

mutex_unlock(vdev->lock);

return ret;

}

驱动实现:

static unsigned int

vivi_poll(struct file *file, struct poll_table_struct *wait)

{

struct vivi_dev *dev = video_drvdata(file);

struct vb2_queue *q = &dev->vb_vidq;

dprintk(dev, 1, "%s\n", __func__);

return vb2_poll(q, file, wait);

}

/**

* This function implements poll file operation handler for a driver.

* For CAPTURE queues, if a buffer is ready to be dequeued, the userspace will be informed that the file descriptor of a video device is available for reading.

* For OUTPUT queues, if a buffer is ready to be dequeued, the file descriptor will be reported as available for writing.

* The return values from this function are intended to be directly returned from poll handler in driver.

*/

STEP 11:

/* 11. VIDIOC_DQBUF把数据放回缓存队列*/

if (-1 == xioctl (fd, VIDIOC_DQBUF, &buf))

中间层控制中枢:

case VIDIOC_DQBUF:

{

struct v4l2_buffer *p = arg;

if (!ops->vidioc_dqbuf)

break;

ret = check_fmt(ops, p->type);

if (ret)

break;

ret = ops->vidioc_dqbuf(file, fh, p);

if (!ret)

dbgbuf(cmd, vfd, p);

break;

}

驱动控制实现:

static int vidioc_dqbuf(struct file *file, void *priv, struct
v4l2_buffer *p)

{

struct vivi_dev *dev = video_drvdata(file);

return vb2_dqbuf(&dev->vb_vidq, p, file->f_flags & O_NONBLOCK);

}

/**

* Should be called from vidioc_dqbuf ioctl handler of a driver.

* This function:

* 1) verifies the passed buffer,

* 2) calls buf_finish callback in the driver (if provided), in which driver can perform any additional operations that may be required before returning the buffer to userspace, such
as cache sync,

* 3) the buffer struct members are filled with relevant information for the userspace.

* The return values from this function are intended to be directly returned from vidioc_dqbuf handler in driver.

*/

STEP 12:

/*12. VIDIOC_QBUF把数据从缓存中读取出来*/

if (-1 == xioctl (fd, VIDIOC_QBUF, &buf))

中间层控制中枢:

case VIDIOC_QBUF:

{

struct v4l2_buffer *p = arg;

if (!ops->vidioc_qbuf)

break;

ret = check_fmt(ops, p->type);

if (ret)

break;

ret = ops->vidioc_qbuf(file, fh, p);

if (!ret)

dbgbuf(cmd, vfd, p);

break;

}

驱动控制实现:

static int vidioc_qbuf(struct file *file, void *priv, struct
v4l2_buffer *p)

{

struct vivi_dev *dev = video_drvdata(file);

return vb2_qbuf(&dev->vb_vidq, p);

}

STEP 13:

/*13. VIDIOC_STREAMOFF结束视频显示函数*/

if (-1 == xioctl (fd, VIDIOC_STREAMOFF, &type))

中间层控制中枢:

case VIDIOC_STREAMOFF:

{

enum v4l2_buf_type i = *(int *)arg;

if (!ops->vidioc_streamoff)

break;

dbgarg(cmd, "type=%s\n", prt_names(i, v4l2_type_names));

ret = ops->vidioc_streamoff(file, fh, i);

break;

}

驱动控制实现:

static int vidioc_streamoff(struct file *file, void *priv, enum
v4l2_buf_type i)

{

struct vivi_dev *dev = video_drvdata(file);

return vb2_streamoff(&dev->vb_vidq, i);

}

STEP 13:

/*13. VIDIOC_STREAMOFF结束视频显示函数*/

if (-1 == xioctl (fd, VIDIOC_STREAMOFF, &type))

中间层控制中枢:

case VIDIOC_STREAMOFF:

{

enum v4l2_buf_type i = *(int *)arg;

if (!ops->vidioc_streamoff)

break;

dbgarg(cmd, "type=%s\n", prt_names(i, v4l2_type_names));

ret = ops->vidioc_streamoff(file, fh, i);

break;

}

驱动控制实现:

static int vidioc_streamoff(struct file *file, void *priv, enum
v4l2_buf_type i)

{

struct vivi_dev *dev = video_drvdata(file);

return vb2_streamoff(&dev->vb_vidq, i);

}

STEP 14:

/*14. close method*/

close(fbfd);

static int v4l2_release(struct inode *inode, struct
file *filp)

{

struct video_device *vdev = video_devdata(filp);

int ret = 0;

if (vdev->fops->release) {

if (vdev->lock)

mutex_lock(vdev->lock);

vdev->fops->release(filp);

if (vdev->lock)

mutex_unlock(vdev->lock);

}

/* decrease the refcount unconditionally since the release()

return value is ignored. */

video_put(vdev);

return ret;

}

static int vivi_close(struct file *file)

{

struct video_device *vdev = video_devdata(file);

struct vivi_dev *dev = video_drvdata(file);

dprintk(dev, 1, "close
called (dev=%s), file %p\n",

video_device_node_name(vdev), file);

if (v4l2_fh_is_singular_file(file))

vb2_queue_release(&dev->vb_vidq);

return v4l2_fh_release(file);

}

到此为止,整个过程算是基本完结了,不过其中videobuf2_core.c 在我看来自己必须专门钻研一下了

videobuf2_core.c 是视频数据传输的核心

也可以说是视频驱动的重中之重

待续。。。。。。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: