您的位置:首页 > 编程语言 > C语言/C++

位运算应用口诀和实例及C++位运算

2013-12-16 19:57 288 查看

位运算应用口诀

清零取反要用与,某位置一可用或
若要取反和交换,轻轻松松用异或
移 位运算
要点 1 它们都是双目运算符,两个运算分量都是整形,结果也是整形。
2 "<<" 左移:右边空出的位上补0,左边的位将从字头挤掉,其值相当于乘2。
3 ">>"右移:右边的位被挤掉。对于左边移出的空位,如果是正数则空位补0,若为负数,可能补0或补1,这取决于所用的计算机系统。
4 ">>>"运算符,右边的位被挤掉,对于左边移出的空位一概补上0。
位运算符的应用 (源操作数s 掩码mask)
(1) 按位与-- &
1 清零特定位 (mask中特定位置0,其它位为1,s=s&mask)
2 取某数中指定位 (mask中特定位置1,其它位为0,s=s&mask)
(2) 按位或-- |
常用来将源操作数某些位置1,其它位不变。 (mask中特定位置1,其它位为0 s=s|mask)
(3) 位异或-- ^
1 使特定位的值取反 (mask中特定位置1,其它位为0 s=s^mask)
2 不引入第三变量,交换两个变量的值 (设 a=a1,b=b1)
目 标 操 作 操作后状态
a=a1^b1 a=a^b a=a1^b1,b=b1
b=a1^b1^b1 b=a^b a=a1^b1,b=a1
a=b1^a1^a1 a=a^b a=b1,b=a1
二进制补码运算公式:
-x = ~x + 1 = ~(x-1)
~x = -x-1
-(~x) = x+1
~(-x) = x-1
x+y = x - ~y - 1 = (x|y)+(x&y)
x-y = x + ~y + 1 = (x|~y)-(~x&y)
x^y = (x|y)-(x&y)
x|y = (x&~y)+y
x&y = (~x|y)-~x
x==y: ~(x-y|y-x)
x!=y: x-y|y-x
x< y: (x-y)^((x^y)&((x-y)^x))
x<=y: (x|~y)&((x^y)|~(y-x))
x< y: (~x&y)|((~x|y)&(x-y))//无符号x,y比较
x<=y: (~x|y)&((x^y)|~(y-x))//无符号x,y比较
应用举例
(1) 判断int型变量a是奇数还是偶数
a&1 = 0 偶数
a&1 = 1 奇数
(2) 取int型变量a的第k位 (k=0,1,2……sizeof(int)),即a>>k&1
(3) 将int型变量a的第k位清0,即a=a&~(1<<k)
(4) 将int型变量a的第k位置1, 即a=a|(1<<k)
(5) int型变量循环左移k次,即a=a<<k|a>>16-k (设sizeof(int)=16)
(6) int型变量a循环右移k次,即a=a>>k|a<<16-k (设sizeof(int)=16)
(7)整数的平均值
对于两个整数x,y,如果用 (x+y)/2 求平均值,会产生溢出,因为 x+y 可能会大于INT_MAX,但是我们知道它们的平均值是肯定不会溢出的,我们用如下算法:
int average(int x, int y) //返回X,Y 的平均值
{
return (x&y)+((x^y)>>1);
}
(8) 判断一个整数是不是2的幂,对于一个数 x >= 0,判断他是不是2的幂
boolean power2(int x)
{
return ((x&(x-1))==0)&&(x!=0);
}
(9)不用temp交换两个整数
void swap(int x , int y)
{
x ^= y;
y ^= x;
x ^= y;
}
(10) 计算绝对值
int abs( int x )
{
int y ;
y = x >> 31 ;
return (x^y)-y ; //or: (x+y)^y
}
(11)取模运算转化成位运算 (在不产生溢出的情况下)
a % (2^n) 等价于 a & (2^n - 1)
(12)乘法运算转化成位运算 (在不产生溢出的情况下)
a * (2^n) 等价于 a<< n
(13)除法运算转化成位运算 (在不产生溢出的情况下)
a / (2^n) 等价于 a>> n
例: 12/8 == 12>>3
(14) a % 2 等价于 a & 1
(15) if (x == a) x= b;
else x= a;
等价于 x= a ^ b ^ x;
(16) x 的 相反数 表示为 (~x+1)

实 例

功能 | 示例 | 位运算
----------------------+---------------------------+--------------------
去 掉最后一位 | (101101->10110) | x >> 1
在最后加一个0 | (101101->1011010) | x << 1
在最后加一个1 | (101101->1011011) | x << 1+1
把最后一位变成1 | (101100->101101) | x | 1
把最后一位变成0 | (101101->101100) | x | 1-1
最后一位取反 | (101101->101100) | x ^ 1
把右数第k位变成1 | (101001->101101,k=3) | x | (1 << (k-1))
把右数第k位变成0 | (101101->101001,k=3) | x & ~ (1 << (k-1))
右数第k位取反 | (101001->101101,k=3) | x ^ (1 << (k-1))
取末三位 | (1101101->101) | x & 7
取末k位 | (1101101->1101,k=5) | x & ((1 << k)-1)

取 右数第k位 | (1101101->1,k=4) | x >> (k-1) & 1

把 末k位变成1 | (101001->101111,k=4) | x | (1 << k-1)
末 k位取反 | (101001->100110,k=4) | x ^ (1 << k-1)
把 右边连续的1变成0 | (100101111->100100000) | x & (x+1)
把右起第一个0变成 1 | (100101111->100111111) | x | (x+1)
把右边连续的0变成1 | (11011000->11011111) | x | (x-1)
取右边连续的1 | (100101111->1111) | (x ^ (x+1)) >> 1
去掉右起第一个1的左边 | (100101000->1000) | x & (x ^ (x-1))
判断奇数 (x&1)==1
判断偶数 (x&1)==0

C++位运算
前言
看到有些人对位运算还存在问题,于是决定写这篇文章作个简要说明。

什么是位(bit)?

很简单,位 (bit)就是单个的0或1,位是我们在计算机上所作一切的基础。计算机上的所有数据都是用位来存储的。一个字节(BYTE)由八个位组成,一个字 (WORD)是二个字节或十六位,一个双字(DWORD)是二个字(WORDS)或三十二位。如下所示:

0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0
| | | | | | |
| +- bit 31 | | | bit 0 -+ |
| | | | |
+-- BYTE 3 ---- -+---- BYTE 2 ---+---- BYTE 1 ---+--- BYTE 0 -----+
| | |
+------------ WORD 1 ------------+----------- WORD 0 -------------+
| |
+----------------------------- DWORD -----------------------------+

使用位运算的好处是可以将BYTE, WORD 或 DWORD 作为小数组或结构使用。通过位运算可以检查位的值或赋值,也可以对整组的位进行运算。

16进制数及其与位的关系
用0 或1表示的数值就是二进制数,很难理解。因此用到16进制数。

16进制数用4个位表示0 - 15的值,4个位组成一个16进制数。也把4位成为半字节(nibble)。一个BYTE有二个nibble,因此可以用二个16进制数表示一个 BYTE。如下所示:

NIBBLE HEX VALUE
====== =========
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

如果 用一个字节存放字母"r"(ASCII码114),结果是:
0111 0010 二进制
7 2 16进制

可以表达 为:'0x72'

有6种位运算:
& 与运算
| 或运算
^ 异或运算
~ 非运算(求补)
>> 右移运算
<< 左移运算

与运算(&)
双目运算。二个位都置位(等于1)时,结果等于1,其它的结 果都等于0。
1 & 1 == 1
1 & 0 == 0
0 & 1 == 0
0 & 0 == 0

与运算的一个用途是检查指定位是否置位(等于1)。例如一个BYTE里有标识位,要检查第4位是否置位,代码如下:

BYTE b = 50;
if ( b & 0x10 )
cout << "Bit four is set" << endl;
else
cout << "Bit four is clear" << endl;

上述代码可表示为:

&00110010 - b
&00010000 - & 0x10
----------------------------
00010000 - result

可以看到 第4位是置位了。

或运算( | )
双目运算。二个位只要有一个位置位,结果就等于1。二个位都为0时,结果为0。
1 | 1 == 1
1 | 0 == 1
0 | 1 == 1
0 | 0 == 0

与运算也可以用来检查置位。例如 要检查某个值的第3位是否置位:

BYTE b = 50;
BYTE c = b | 0x04;
cout << "c = " << c << endl;

可表达为:

|00110010 - b
|00000100 - | 0x04
----------
00110110 - result

异 或运算(^)
双目运算。二个位不相等时,结果为1,否则为0。

1 ^ 1 == 0
1 ^ 0 == 1
0 ^ 1 == 1
0 ^ 0 == 0

异或运算可用于位值翻转。例如将第3位与第4位的值翻转:

BYTE b = 50;
cout << "b = " << b << endl;
b = b ^ 0x18;
cout << "b = " << b << endl;
b = b ^ 0x18;
cout << "b = " << b << endl;

可表达为:

^00110010 - b
^00011000 - ^0x18
----------
00101010 - result

^00101010 - b
^00011000 - ^0x18
----------
00110010 - result

非运算 (~)
单目运算。位值取反,置0为1,或置1为0。非运算的用途是将指定位清0,其余位置1。非运算与数值大小无关。例如将第1位和第2位清0, 其余位置1:

BYTE b = ~0x03;
cout << "b = " << b << endl;
WORD w = ~0x03;
cout << "w = " << w << endl;

可表达为:

00000011 - 0x03
11111100 - ~0x03 b

0000000000000011 - 0x03
1111111111111100 - ~0x03 w

非运算和与运算结合,可以确保将指定为清0。如将第4位清 0:

BYTE b = 50;
cout << "b = " << b << endl;
BYTE c = b & ~0x10;
cout << "c = " << c << endl;

可 表达为:

&00110010 - b
&11101111 - ~0x10
----------
00100010 - result

移位运算(>> 与 <<)
将位值向一个方向移动指定的位数。右 移 >> 算子从高位向低位移动,左移 << 算子从低位向高位移动。往往用位移来对齐位的排列(如MAKEWPARAM, HIWORD, LOWORD 宏的功能)。

BYTE b = 12;
cout << "b = " << b << endl;
BYTE c = b << 2;
cout << "c = " << c << endl;
c = b >> 2;
cout << "c = " << c << endl;

可表达为:
00001100 - b
00110000 - b << 2
00000011 - b >> 2

译注:以上示例都对,但举例用法未必恰当。请阅文末链接的 文章,解释得较为清楚。

位域(Bit Field)
位操作中的一件有意义的事是位域。利用位域可以用BYTE, WORD或DWORD来创建最小化的数据结构。例如要保存日期数据,并尽可能减少内存占用,就可以声明这样的结构:

struct date_struct {
BYTE day : 5, // 1 to 31
month : 4, // 1 to 12
year : 14; // 0 to 9999
}date;

在结构中,日期数据占用最低5位,月份占用4位,年占用14位。这样整个日 期数据只需占用23位,即3个字节。忽略第24位。如果用整数来表达各个域,整个结构要占用12个字节。

| 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 |
| | | |
+------------- year --------------+ month+-- day --+

现在分别看看在这个结构声明中发生了什么



先看一下位域结构使用的数据类型。这里用的是BYTE。1个BYTE有8个位,编译器将分配1个BYTE的内存。如果结构内的数据超过8位,编译器就再分
配1个BYTE,直到满足数据要求。如果用WORD或DWORD作结构的数据类型,编译器就分配一个完整的32位内存给结构。

其次看一下 域声明。变量(day, month, year)名跟随一个冒号,冒号后是变量占用的位数。位域之间用逗号分隔,用分号结束。

使用了位 域结构,就可以方便地象处理普通结构数据那样处理成员数据。尽管我们无法得到位域的地址,却可以使用结构地址。例如:
date.day = 12;
dateptr = &date;
dateptr->year = 1852;
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: