您的位置:首页 > 运维架构 > Linux

OpenRisc-20-or1200下linux的i2c(二)

2013-12-09 10:27 316 查看
这段时间开始有点小忙了,但是还是坚持学习一下linux,至于上次记得是基于linux系统自带的i2c-ocores.c文件接口写了简单的测试程序,这次就基于opencores社区上大虾写好的i2c controller总线驱动来做一下分析,这个总线驱动在openrisc-3.1\drivers\i2c\busses目录下~这个总线驱动是基于Richard Herveille编写的i2c-master的ipcore,在opencores社区上可以下到这份RTL的代码,然后打开源码里面的i2c_specs说明文档看看这个ipcores的相关操作。

openrisc-3.1\drivers\i2c\busses\i2c-ocores.c,好~Open之,

然后回想一下之前blog里面写过的关于gpio字符驱动的内容,最后一步我们是把gpio的字符驱动封装成platform机制的,所以,照板煮碗,把代码拉到最后面就可以看到i2c-ocres.c也是同样的道理。

First,定义一个platform_driver结构。

Second,初始化这个结构,指定其probe、remove等函数,并初始化其中的driver变量。

Third,实现其probe、remove等函数。

以上是platform平台驱动的步骤。

然后说明一下i2c总线驱动负责的工作是:

First,申请i2c总线控制器所用到的硬件资源(IO、中断号、内存等等)。

Second,向内核增加一个i2c_adapter数据结构表示这个总线驱动,并且实现i2c_adapter数据结构中的algo成员(即控制i2c控制器的代码)。

所以总线驱动代码的综合效果就是将上面驱动负责的工作写入platform平台驱动,并注册完成i2c总线驱动。

下面来分析一下~

首先,例化关于i2c的平台驱动,这里编写的是对应i2c的总线驱动,所以在例化i2c总线驱动时的of_match_table列表要对应在DTS设备树文件中i2c的总线控制器的compatible,在module加载入kernel时才会按照名称搜索加载i2c的总线驱动。

DTS设备树i2c描述:

[cpp] view
plaincopyprint?

i2c0: ocores@93000000 {

compatible = "opencores,i2c-ocores";

reg = <0x93000000 0x8>;

interrupts = <5>;

regstep = <1>;

clock-frequency = <40000000>;

#address-cells = <1>;

#size-cells = <0>;

eeprom@54 {

compatible = "at24";

reg = <0x54>;

};

};

总线驱动注册代码:

[cpp] view
plaincopyprint?

static struct of_device_id ocores_i2c_match[] = {

{ .compatible = "opencores,i2c-ocores", },

{},

};

MODULE_DEVICE_TABLE(of, ocores_i2c_match);

/* work with hotplug and coldplug */

MODULE_ALIAS("platform:ocores-i2c");

static struct platform_driver ocores_i2c_driver = {

.probe = ocores_i2c_probe,

.remove = __devexit_p(ocores_i2c_remove),

.suspend = ocores_i2c_suspend,

.resume = ocores_i2c_resume,

.driver = {

.owner = THIS_MODULE,

.name = "ocores-i2c",

.of_match_table = ocores_i2c_match,

},

};

static int __init ocores_i2c_init(void)

{

return platform_driver_register(&ocores_i2c_driver);

}

static void __exit ocores_i2c_exit(void)

{

platform_driver_unregister(&ocores_i2c_driver);

}

module_init(ocores_i2c_init);

module_exit(ocores_i2c_exit);

然后,要实现probe、remove等函数

[cpp] view
plaincopyprint?

static int __devinit ocores_i2c_probe(struct platform_device *pdev)

{

struct ocores_i2c *i2c;

struct ocores_i2c_platform_data *pdata;

struct resource *res, *res2;

int ret;

int i;

//获取DTS文件中的IO资源(地址范围)

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

if (!res)

return -ENODEV;

//获取DTS文件中的中断号资源

res2 = platform_get_resource(pdev, IORESOURCE_IRQ, 0);

if (!res2)

return -ENODEV;

//申请内存

i2c = devm_kzalloc(&pdev->dev, sizeof(*i2c), GFP_KERNEL);

if (!i2c)

return -ENOMEM;

//检查是否有足够内存

if (!devm_request_mem_region(&pdev->dev, res->start,

resource_size(res), pdev->name)) {

dev_err(&pdev->dev, "Memory region busy\n");

return -EBUSY;

}

//i2c控制器wishbone总线物理地址映射到内核地址空间

i2c->base = devm_ioremap_nocache(&pdev->dev, res->start,

resource_size(res));

if (!i2c->base) {

dev_err(&pdev->dev, "Unable to map registers\n");

return -EIO;

}

//例化一个指针指向platform_device的设备的私有数据域,这个数据从编译DTS文件时获取

pdata = pdev->dev.platform_data;

if (pdata) {

i2c->regstep = pdata->regstep;

i2c->clock_khz = pdata->clock_khz;

} else {

ret = ocores_i2c_of_probe(pdev, i2c);

if (ret)

return ret;

}

//初始化i2c控制器,具体可参考i2c_specs

ocores_init(i2c);

//初始化等待队列,目前我还没明白这个,水平有限

init_waitqueue_head(&i2c->wait);

//申请设备使用的中断号,并注册中断函数

ret = devm_request_irq(&pdev->dev, res2->start, ocores_isr, 0,

pdev->name, i2c);

if (ret) {

dev_err(&pdev->dev, "Cannot claim IRQ\n");

return ret;

}

/* hook up driver to tree */

//将i2c保存到platform_device中dev成员的p成员的driver_data数据域中

platform_set_drvdata(pdev, i2c);

i2c->adap = ocores_adapter;

//将i2c保存到i2c_adapter中dev成员的p成员的driver_data数据域中

i2c_set_adapdata(&i2c->adap, i2c);

i2c->adap.dev.parent = &pdev->dev;

i2c->adap.dev.of_node = pdev->dev.of_node;

/* add i2c adapter to i2c tree */

//增加i2c adapter的数据结构

ret = i2c_add_adapter(&i2c->adap);

if (ret) {

dev_err(&pdev->dev, "Failed to add adapter\n");

return ret;

}

/* add in known devices to the bus */

//如果在DTS文件中有多个共享总线驱动的从设备便会枚举出来

if (pdata) {

for (i = 0; i < pdata->num_devices; i++)

i2c_new_device(&i2c->adap, pdata->devices + i);

}

return 0;

}

[cpp] view
plaincopyprint?

static int __devexit ocores_i2c_remove(struct platform_device* pdev)

{

//将之前保存在platform_device中dev成员的p成员的driver_data数据域中的数据取出

struct ocores_i2c *i2c = platform_get_drvdata(pdev);

/* disable i2c logic */

//无效i2c总线控制器

oc_setreg(i2c, OCI2C_CONTROL, oc_getreg(i2c, OCI2C_CONTROL)

& ~(OCI2C_CTRL_EN|OCI2C_CTRL_IEN));

/* remove adapter & data */

//删除完成注册的i2c_adapter

i2c_del_adapter(&i2c->adap);

//删除platform_device中dev成员的p成员的driver_data

platform_set_drvdata(pdev, NULL);

return 0;

}

至于有关电源管理的suspend和resume暂且忽略,内核配置中暂时不去实现。

这样就注册好平台设备驱动。

接下去就在源码中去结合注释和i2c-specs的文档好好看看通信算法处理函数,这也是我们从新开发总线驱动的时候必须去编写的代码~

首先是定义i2c_adapter和其成员变量的algo算法

[cpp] view
plaincopyprint?

static u32 ocores_func(struct i2c_adapter *adap)

{

return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;

}

//定义一个i2c_algorithm的数据结构,其中实现控制器通信算法master_xfer

//和functionality(master_xfer通信算法支持的协议)

static const struct i2c_algorithm ocores_algorithm = {

.master_xfer = ocores_xfer,

.functionality = ocores_func,

};

//定义一个i2c_adapter,完成总线控制器的描述,并在probe中向内核注册

static struct i2c_adapter ocores_adapter = {

.owner = THIS_MODULE,

.name = "i2c-ocores",

.class = I2C_CLASS_HWMON | I2C_CLASS_SPD,

.algo = &ocores_algorithm,

};

其中由于这个驱动是基于中断架构的收发,结合源码继续往下看。

首先看看在probe中调用的ocores_init(),完成的是总线控制器的初始化

[cpp] view
plaincopyprint?

//根据i2c-specs文档初始化总线控制器

//对比文档中的寄存器进行操作

static void ocores_init(struct ocores_i2c *i2c)

{

int prescale;

//取出Control register寄存器的值,在i2c-specs中有说明~

u8 ctrl = oc_getreg(i2c, OCI2C_CONTROL);

/* make sure the device is disabled */

//i2c cores禁止中断和无效总线控制器

oc_setreg(i2c, OCI2C_CONTROL, ctrl & ~(OCI2C_CTRL_EN|OCI2C_CTRL_IEN));

//设置i2c总线控制器的通信速率,在i2c-specs文档有计算公式

prescale = (i2c->clock_khz / (5*100)) - 1;

//将速率写入PRERlo和PRERhi寄存器

oc_setreg(i2c, OCI2C_PRELOW, prescale & 0xff);

oc_setreg(i2c, OCI2C_PREHIGH, prescale >> 8);

/* Init the device */

//清除中断标志位,使能总线控制器的中断和使能总线控制器

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_IACK);

oc_setreg(i2c, OCI2C_CONTROL, ctrl | OCI2C_CTRL_IEN | OCI2C_CTRL_EN);

}

然后程序调用通信算法时会hold住,在中断中处理数据,然后等待事件集到来,完成通信。

[cpp] view
plaincopyprint?

//发送和接收调用的总线通信算法函数

static int ocores_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)

{

//在ocores_i2c中有i2c_adapter成员,而i2c_adapter成员在probe进行时

//已经由i2c_set_adapdata()保存到i2c_adapter中,所以这里取出保存在

//i2c_adapter中dev成员的p成员的driver_data数据域

struct ocores_i2c *i2c = i2c_get_adapdata(adap);

//获取由应用层传入的i2c message

i2c->msg = msgs;

i2c->pos = 0;

i2c->nmsgs = num;

i2c->state = STATE_START;

//根据i2c message类型是读还是写进行器件地址选择和设置LSB的读写位

oc_setreg(i2c, OCI2C_DATA,

(i2c->msg->addr << 1) |

((i2c->msg->flags & I2C_M_RD) ? 1:0));

//根据i2c协议第一次是写器件地址和读写位的组合

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_START);

//等待事件集到来,???操作系统没学过,现在恶补

if (wait_event_timeout(i2c->wait, (i2c->state == STATE_ERROR) ||

(i2c->state == STATE_DONE), HZ))

return (i2c->state == STATE_DONE) ? num : -EIO;

else

return -ETIMEDOUT;

}

[cpp] view
plaincopyprint?

[cpp] view
plaincopyprint?

//当总线控制器完成一个byte发送和接收时调用的中断函数

//因为这个驱动采用了中断的方式收发数据

static irqreturn_t ocores_isr(int irq, void *dev_id)

{

struct ocores_i2c *i2c = dev_id;

ocores_process(i2c);

return IRQ_HANDLED;

}

[cpp] view
plaincopyprint?

//当总线控制器完成一个byte发送和接收时调用的中断函数

//因为这个驱动采用了中断的方式收发数据

static irqreturn_t ocores_isr(int irq, void *dev_id)

{

struct ocores_i2c *i2c = dev_id;

ocores_process(i2c);

return IRQ_HANDLED;

}

[cpp] view
plaincopyprint?

//中断处理函数的处理过程,目前没认真整理过,根据i2c通信协议再好好看看

//然后有时间再总结出来

static void ocores_process(struct ocores_i2c *i2c)

{

struct i2c_msg *msg = i2c->msg;

u8 stat = oc_getreg(i2c, OCI2C_STATUS);

if ((i2c->state == STATE_DONE) || (i2c->state == STATE_ERROR)) {

/* stop has been sent */

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_IACK);

wake_up(&i2c->wait);

return;

}

/* error? */

if (stat & OCI2C_STAT_ARBLOST) {

i2c->state = STATE_ERROR;

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_STOP);

return;

}

if ((i2c->state == STATE_START) || (i2c->state == STATE_WRITE)) {

i2c->state =

(msg->flags & I2C_M_RD) ? STATE_READ : STATE_WRITE;

if (stat & OCI2C_STAT_NACK) {

i2c->state = STATE_ERROR;

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_STOP);

return;

}

} else

msg->buf[i2c->pos++] = oc_getreg(i2c, OCI2C_DATA);

/* end of msg? */

if (i2c->pos == msg->len) {

i2c->nmsgs--;

i2c->msg++;

i2c->pos = 0;

msg = i2c->msg;

if (i2c->nmsgs) { /* end? */

/* send start? */

if (!(msg->flags & I2C_M_NOSTART)) {

u8 addr = (msg->addr << 1);

if (msg->flags & I2C_M_RD)

addr |= 1;

i2c->state = STATE_START;

oc_setreg(i2c, OCI2C_DATA, addr);

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_START);

return;

} else

i2c->state = (msg->flags & I2C_M_RD)

? STATE_READ : STATE_WRITE;

} else {

i2c->state = STATE_DONE;

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_STOP);

return;

}

}

if (i2c->state == STATE_READ) {

oc_setreg(i2c, OCI2C_CMD, i2c->pos == (msg->len-1) ?

OCI2C_CMD_READ_NACK : OCI2C_CMD_READ_ACK);

} else {

oc_setreg(i2c, OCI2C_DATA, msg->buf[i2c->pos++]);

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_WRITE);

}

}

[cpp] view
plaincopyprint?

//中断处理函数的处理过程,目前没认真整理过,根据i2c通信协议再好好看看

//然后有时间再总结出来

static void ocores_process(struct ocores_i2c *i2c)

{

struct i2c_msg *msg = i2c->msg;

u8 stat = oc_getreg(i2c, OCI2C_STATUS);

if ((i2c->state == STATE_DONE) || (i2c->state == STATE_ERROR)) {

/* stop has been sent */

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_IACK);

wake_up(&i2c->wait);

return;

}

/* error? */

if (stat & OCI2C_STAT_ARBLOST) {

i2c->state = STATE_ERROR;

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_STOP);

return;

}

if ((i2c->state == STATE_START) || (i2c->state == STATE_WRITE)) {

i2c->state =

(msg->flags & I2C_M_RD) ? STATE_READ : STATE_WRITE;

if (stat & OCI2C_STAT_NACK) {

i2c->state = STATE_ERROR;

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_STOP);

return;

}

} else

msg->buf[i2c->pos++] = oc_getreg(i2c, OCI2C_DATA);

/* end of msg? */

if (i2c->pos == msg->len) {

i2c->nmsgs--;

i2c->msg++;

i2c->pos = 0;

msg = i2c->msg;

if (i2c->nmsgs) { /* end? */

/* send start? */

if (!(msg->flags & I2C_M_NOSTART)) {

u8 addr = (msg->addr << 1);

if (msg->flags & I2C_M_RD)

addr |= 1;

i2c->state = STATE_START;

oc_setreg(i2c, OCI2C_DATA, addr);

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_START);

return;

} else

i2c->state = (msg->flags & I2C_M_RD)

? STATE_READ : STATE_WRITE;

} else {

i2c->state = STATE_DONE;

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_STOP);

return;

}

}

if (i2c->state == STATE_READ) {

oc_setreg(i2c, OCI2C_CMD, i2c->pos == (msg->len-1) ?

OCI2C_CMD_READ_NACK : OCI2C_CMD_READ_ACK);

} else {

oc_setreg(i2c, OCI2C_DATA, msg->buf[i2c->pos++]);

oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_WRITE);

}

}

另外还有两个读写寄存器的函数,相信聪明你的绝对是看得明白的~不解释了~

[cpp] view
plaincopyprint?

//这两个函数没什么好解释的了,大家都能看得懂的了

//至于regstep在DTS文件中定义(寄存器的步长),对应的i2c-specs中寄存器步长为1

static inline void oc_setreg(struct ocores_i2c *i2c, int reg, u8 value)

{

iowrite8(value, i2c->base + reg * i2c->regstep);

}

static inline u8 oc_getreg(struct ocores_i2c *i2c, int reg)

{

return ioread8(i2c->base + reg * i2c->regstep);

}

[cpp] view
plaincopyprint?

//这两个函数没什么好解释的了,大家都能看得懂的了

//至于regstep在DTS文件中定义(寄存器的步长),对应的i2c-specs中寄存器步长为1

static inline void oc_setreg(struct ocores_i2c *i2c, int reg, u8 value)

{

iowrite8(value, i2c->base + reg * i2c->regstep);

}

static inline u8 oc_getreg(struct ocores_i2c *i2c, int reg)

{

return ioread8(i2c->base + reg * i2c->regstep);

}

先到这里了,至于文章中我觉得没说明白的地方在有时间的时候会补齐的~今天要把食梦者第3季给追完啦~谢谢各位捧场啦~
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: