您的位置:首页 > 编程语言 > C语言/C++

C++笔试题(2),持续更新中……

2013-11-21 18:05 344 查看
1.本文的写作目的并不在于提供C/C++程序员求职面试指导,而旨在从技术上分析面试题的内涵。文中的大多数面试题来自各大论坛,部分试题解答也参考了网友的意见。
许多面试题看似简单,却需要深厚的基本功才能给出完美的解答。企业要求面试者写一个最简单的strcpy函数都可看出面试者在技术上究竟达到了怎样的程度,我们能真正写好一个strcpy函数吗?我们都觉得自己能,可是我们写出的strcpy 很可能只能拿到10分中的2分。读者可从本文看到strcpy 函数从2分到10分解答的例子,看看自己属于什么样的层次。此外,还有一些面试题考查面试者敏捷的思维能力。

分析这些面试题,本身包含很强的趣味性;而作为一名研发人员,通过对这些面试题的深入剖析则可进一步增强自身的内功。

2.找错题

试题1:

void test1()
{
 char string[10];
 char* str1 = "0123456789";
 strcpy( string, str1 );
}


  试题2:

void test2()
{
 char string[10], str1[10];
 int i;
 for(i=0; i<10; i++)
 {
  str1 = 'a';
 }
 strcpy( string, str1 );
}


  试题3:

void test3(char* str1)
{
 char string[10];
 if( strlen( str1 ) <= 10 )
 {
  strcpy( string, str1 );
 }
}


解答:

试题1,字符串str1需要11个字节才能存放下(包括末尾的’\0’),而string 只有10 个字节的空间,strcpy 会导致数组越界;

试题2,如果面试者指出字符数组str1不能在数组内结束可以给3分;如果面试者指出strcpy(string, str1)调用使得从str1内存起复制到string内存起所复制的字节数具有不确定性可以给7分,在此基础上指出库函数strcpy工作方式的给10 分;

试题3,if(strlen(str1) <= 10)应改为if(strlen(str1)< 10),因为strlen的结果未统计’\0’所占用的1个字节。

剖析:

考查对基本功的掌握:(1)字符串以’\0’结尾;(2)对数组越界把握的敏感度;(3)库函数strcpy 的工作方式,如果编写一个标准strcpy函数的总分值为10,下面给出几个不同得分的答案:

  2分

void strcpy( char *strDest, char *strSrc )
{
  while( (*strDest++ = * strSrc++) != ‘\0’ );
}


  4分

void strcpy( char *strDest, const char*strSrc )
//将源字符串加const,表明其为输入参数,加2分
{
  while( (*strDest++ = * strSrc++) != ‘\0’ );
}


  7分

void strcpy(char *strDest, const char*strSrc)
{
 //对源地址和目的地址加非0断言,加3分
 assert( (strDest != NULL) && (strSrc != NULL));
 while( (*strDest++ = * strSrc++) != ‘\0’ );
}


10分

//为了实现链式操作,将目的地址返回,加3分!
char * strcpy( char *strDest,const char *strSrc )
{
assert( (strDest != NULL) && (strSrc!= NULL) );
char *address = strDest;
while( (*strDest++ = * strSrc++) != ‘\0’ );
return address;
}


从2 分到10 分的几个答案我们可以清楚的看到,小小的strcpy 竟然暗藏着这么多玄机,真不是盖的!需要多么扎实的基本功才能写一个完美的strcpy啊!

  (4)对strlen的掌握,它没有包括字符串末尾的'\0'。

  读者看了不同分值的strcpy版本,应该也可以写出一个10分的strlen函数了,完美的版本为:

int strlen( const char *str ) //输入参数const
{
 assert( strt != NULL ); //断言字符串地址非0
 int len;
 while( (*str++) != '\0' )
 {
  len++;
 }
 return len;
}


  试题4:

void GetMemory( char *p )
{
 p = (char *) malloc( 100 );
}
void Test( void )
{
 char *str = NULL;
 GetMemory( str );
 strcpy( str, "hello world" );
 printf( str );
}


  试题5:

char *GetMemory( void )
{
 char p[] = "hello world";
 return p;
}
void Test( void )
{
 char *str = NULL;
 str = GetMemory();
 printf( str );
}


  试题6:

void GetMemory( char **p, int num )
{
 *p = (char *) malloc( num );
}
void Test( void )
{
 char *str = NULL;
 GetMemory( &str, 100 );
 strcpy( str, "hello" );
 printf( str );
}


  试题7:

void Test( void )
{
 char *str = (char *) malloc( 100 );
 strcpy( str, "hello" );
 free( str );
 ... //省略的其它语句
}


  解答:

  试题4 传入中GetMemory( char *p )函数的形参为字符串指针,在函数内部修改形参并不能真正的改变传入形参的值,执行

完char *str = NULL;GetMemory( str );后的str仍然为NULL;

  试题5中char p[] = "hello world";return p;的p[]数组为函数内的局部自动变量,在函数返回后,内存已经被释放。这是许多程序员常犯的错误,其根源在于不理解变量的生存期。

  试题6的GetMemory避免了试题4的问题,传入GetMemory的参数为字符串指针的指针,但是在GetMemory 中执行申请内存及赋值语句

*p = (char *) malloc( num );后未判断内存是否申请成功,应加上:if ( *p == NULL )

{

 ...//进行申请内存失败处理

}

  试题7存在与试题6同样的问题,在执行char *str = (char *) malloc(100);

  后未进行内存是否申请成功的判断;另外,在free(str)后未置str为空,导致可能变成一个“野”指针,应加上:str = NULL;

  试题6的Test函数中也未对malloc的内存进行释放。

  剖析:

  试题4~7考查面试者对内存操作的理解程度,基本功扎实的面试者一般都能正确的回答其中50~60的错误。但是要完全解答正确,却也绝非易事。

  对内存操作的考查主要集中在:(1)指针的理解;(2)变量的生存期及作用范围;(3)良好的动态内存申请和释放习惯。

  再看看下面的一段程序有什么错误:

swap( int* p1,int* p2 )
{
 int *p;
 *p = *p1;
 *p1 = *p2;
 *p2 = *p;
}


  在swap 函数中,p 是一个“野”指针,有可能指向系统区,导致程序运行的崩溃。在VC++中DEBUG 运行时提示错误“Access

Violation”。该程序应该改为:

swap( int* p1,int* p2 )
{
 int p;
 p = *p1;
 *p1 = *p2;
 *p2 = p;
}


 3.内功题

  试题1:分别给出BOOL,int,float,指针变量 与“零值”比较的 if 语句(假设变量名为var)

  解答:

   BOOL型变量:if(!var)

   int型变量: if(var==0)

   float型变量:

   const float EPSINON = 0.00001;

   if ((x >= - EPSINON) && (x <= EPSINON)

   指针变量:  if(var==NULL)

  剖析:

  考查对0 值判断的“内功”,BOOL 型变量的0 判断完全可以写成if(var==0),而int 型变量也可以写成if(!var),指针变量的判断也可以写成if(!var),上述写法虽然程序都能正确运行,但是未能清晰地表达程序的意思。

  一般的,如果想让if判断一个变量的“真”、“假”,应直接使用if(var)、if(!var),表明其为“逻辑”判断;如果用if判断一个数值型变量(short、int、long等),应该用if(var==0),表明是与0进行“数值”上的比较;而判断指针则适宜用if(var==NULL),这是一种很好的编程习惯。

  浮点型变量并不精确,所以不可将float 变量用“==”或“!=”与数字比较,应该设法转化成“>=”或“<=”形式。如果写成if (x == 0.0),则判为错,得0分。

  试题2:以下为Windows NT 下的32 位C++程序,请计算

sizeof的值

void Func ( char str[100] )

{

 sizeof( str ) = ?

}

void *p = malloc( 100 );

sizeof ( p ) = ?

  解答:

sizeof( str ) = 4

sizeof ( p ) = 4

  剖析:

 Func ( char str[100] )函数中数组名作为函数形参时,在函数体内,数组名失去了本身的内涵,仅仅只是一个指针;在失去其内涵的同时,它还失去了其常量特性,可以作自增、自减等操作,可以被修改。

  数组名的本质如下:

  (1)数组名指代一种数据结构,这种数据结构就是数组;例如:char str[10];cout << sizeof(str) << endl;输出结果为10,str指代数据结构char[10]。

  (2)数组名可以转换为指向其指代实体的指针,而且是一个指针常量,不能作自增、自减等操作,不能被修改;char str[10];str++; //编译出错,提示str不是左值;

  (3)数组名作为函数形参时,沦为普通指针。Windows NT 32位平台下,指针的长度(占用内存的大小)为4字节,故sizeof(str ) 、sizeof ( p ) 都为4。

  试题3:写一个“标准”宏MIN,这个宏输入两个参数并返回较小的一个。另外,当你写下面的代码时会发生什么事?least = MIN(*p++, b);

  解答:#define MIN(A,B) ((A) <= (B) ? (A) :(B)) MIN(*p++, b)会产生宏的副作用

  剖析:

  这个面试题主要考查面试者对宏定义的使用,宏定义可以实现类似于函数的功能,但是它终归不是函数,而宏定义中括弧中的“参数”也不是真的参数,在宏展开的时候对“参数”进行的是一对一的替换。

  程序员对宏定义的使用要非常小心,特别要注意两个问题:

  (1)谨慎地将宏定义中的“参数”和整个宏用用括弧括起来。所以,严格地讲,下述解答:

#define MIN(A,B) (A) <= (B) ? (A) : (B)

#define MIN(A,B) (A <= B ? A : B )

  都应判0分;

  (2)防止宏的副作用。

  宏定义#define MIN(A,B) ((A) <= (B) ? (A) : (B))对MIN(*p++, b)的作用结果是:((*p++) <= (b) ? (*p++) :
(*p++)),这个表达式会产生副作用,指针p会作三次++自增操作。除此之外,另一个应该判0分的解答是:#define MIN(A,B) ((A) <= (B) ? (A) :(B));这个解答在宏定义的后面加“;”,显示编写者对宏的概念模糊不清,只能被无情地判0分并被面试官淘汰。

  试题7:编写类String的构造函数、析构函数和赋值函数,已

知类String的原型为:

class String
{
 public:
  String(const char *str = NULL); // 普通构造函数
  String(const String &other); // 拷贝构造函数
  ~ String(void); // 析构函数
  String & operate =(const String &other); // 赋值函数
 private:
  char *m_data; // 用于保存字符串
};


  解答:

//普通构造函数
String::String(const char *str)
{
 if(str==NULL)
 {
  m_data = new char[1]; // 得分点:对空字符串自动申请存
放结束标志'\0'的空
  //加分点:对m_data加NULL 判断
  *m_data = '\0';
 }
 else
 {
  int length = strlen(str);
  m_data = new char[length+1]; // 若能加 NULL 判断则更
好
  strcpy(m_data, str);
 }
}
// String的析构函数
String::~String(void)
{
 delete [] m_data; // 或deletem_data;
}
//拷贝构造函数
String::String(const String &other)  // 得分点:输入参数为const型
{
 int length = strlen(other.m_data);
 m_data = new char[length+1];  //加分点:m_data加NULL 判断
 strcpy(m_data, other.m_data);
}
//赋值函数
String & String::operate =(const String&other) // 得分
点:输入参数为const型
{
 if(this == &other)   //得分点:检查自赋值
  return *this;
 delete [] m_data;     //得分点:释放原有的内存资源
 int length = strlen( other.m_data );
 m_data = new char[length+1];  //加分点:对m_data 加
NULL 判断
 strcpy( m_data, other.m_data );
 return *this;         //得分点:返回本对象的引
用
}


  剖析:能够准确无误地编写出String类的构造函数、拷贝构造函数、赋值函数和析构函数的面试者至少已经具备了C++基本功的60%以上!在这个类中包括了指针类成员变量m_data,当类中包括指针类成员变量时,一定要重载其拷贝构造函数、赋值函数和析构函数,这既是对C++程序员的基本要求,也是《Effective C++》中特别强调的条款。仔细学习这个类,特别注意加注释的得分点和加分点的意义,这样就具备了60%以上的C++基本功!

试题8:请说出static和const关键字尽可能多的作用

解答:

static关键字至少有下列n个作用:

(1)函数体内static变量的作用范围为该函数体,不同于auto 变量,该变量的内存只被分配一次,因此其值在下次调用时仍维持上次的值;

(2)在模块内的static全局变量可以被模块内所用函数访问,但不能被模块外其它函数访问;

(3)在模块内的static函数只可被这一模块内的其它函数调用,这个函数的使用范围被限制在声明它的模块内;

(4)在类中的static成员变量属于整个类所拥有,对类的所有对象只有一份拷贝;

(5)在类中的static成员函数属于整个类所拥有,这个函数不接收this指针,因而只能访问类的static成员变量。

const关键字至少有下列n个作用:

(1)欲阻止一个变量被改变,可以使用const关键字。在定义该const变量时,通常需要对它进行初始化,因为以后就没有机会再去改变它了;

(2)对指针来说,可以指定指针本身为const,也可以指定指针所指的数据为const,或二者同时指定为const;

(3)在一个函数声明中,const可以修饰形参,表明它是一个输入参数,在函数内部不能改变其值;

(4)对于类的成员函数,若指定其为const类型,则表明其是一个常函数,不能修改类的成员变量;

(5)对于类的成员函数,有时候必须指定其返回值为const类型,以使得其返回值不为“左值”。

例如:

const classA operator*(const classA&a1,const classA&a2);operator*的返回结果必须是一个const对象。如果不是,这样的变态代码也不会编译出错:classA
a, b, c;(a * b) = c; // 对a*b的结果赋值操作(a * b) = c显然不符合编程者的初衷,也没有任何意义。

  剖析:惊讶吗?小小的static和const 居然有这么多功能,我们能回答几个?如果只能回答1~2个,那还真得闭关再好好修炼修炼。

  这个题可以考查面试者对程序设计知识的掌握程度是初级、中级还是比较深入,没有一定的知识广度和深度,不可能对这个问题给出全面的解答。大多数人只能回答出static和const关键字的部分功能。

4.技巧题

  试题1:请写一个C 函数,若处理器是Big_endian的,则返回0;若是Little_endian的,则返回1

  解答:

int checkCPU()
{
 {
  union w
  {
   int a;
   char b;
  } c;
  c.a = 1;
  return (c.b == 1);
 }
}


  剖析:

  嵌入式系统开发者应该对Little-endian 和Big-endian模式非常了解。采用Little-endian 模式的CPU 对操作数的存放方式是从低字节到高字节,而Big-endian模式对操作数的存放方式是从高字节到低字节。例如,16bit
宽的数0x1234 在Littleendian模式CPU 内存中的存放方式(假设从地址0x4000 开始存放)为:

内存地址 存放内容

0x4000 0x34

0x4001 0x12

  而在Big-endian模式CPU内存中的存放方式则为:

内存地址 存放内容

0x4000 0x12

0x4001 0x34

  32bit 宽的数0x12345678 在Little-endian模式CPU 内存中

的存放方式(假设从地址0x4000开始存放)为:

内存地址 存放内容

0x4000 0x78

0x4001 0x56

0x4002 0x34

0x4003 0x12

  而在Big-endian模式CPU内存中的存放方式则为:

内存地址 存放内容

0x4000 0x12

0x4001 0x34

0x4002 0x56

0x4003 0x78

  联合体union的存放顺序是所有成员都从低地址开始存放,面试者的解答利用该特性,轻松地获得了CPU 对内存采用Littleendian还是Big-endian模式读写。如果谁能当场给出这个解答,那简直就是一个天才的程序员。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: