您的位置:首页 > 运维架构 > Linux

linux usb 驱动详解 一

2013-11-07 14:30 489 查看
内核使用2.6.29.4

拓扑结构上, 一个 USB 子系统并不是以总线的方式来分布; 它是一棵由几个点对点连接构成的树。这些连接是连接设备和集线器的4线电缆(地, 电源, 和 2 个差分信号线), 如同以太网的双绞线。USB主控制器负责询问每个USB设备是否有数据需要发送。

由于这个拓扑结构,一个 USB 设备在没有主控制器要求的情况下不能发送数据. 也就是说:USB是单主方式的实现,主机轮询各外设。但是设备也可以要求一个固定的数据传输带宽,以保证可靠的音视频I/O。USB只作为数据传输通道, 对他所收发的数据格式没有特殊的内容和结构上的要求,也就是类似于透传。

Linux内核支持两种主要类型的USB驱动程序:Host系统上的驱动程序(USB device driver)和device上的驱动程序(USB gadget driver)(设备端驱动)。

USB 驱动程序存在于不同的内核子系统和USB硬件控制器之中。USB核心为USB驱动程序提供了一个用于访问和控制USB硬件的接口,它隐藏了USB控制器的 硬件细节。从这里我们要知道:《LDD3》所谓的USB驱动是针对USB核心提供的接口而写的,并不是真正去操纵USB硬件控制器中的寄存器。这样你必须 保证你的板子上CPU的USB硬件控制器的驱动是可用的。否则您就得先搞定CPU的USB硬件控制器的驱动才行。

以下是Linux内核中USB驱动的软件构架:
如左下图所示,从主机侧的观念去看,在Linux驱动中,USB驱动处于最底层的是USB主机控制器硬件,在其之上运行的是USB主机控制器驱动,主机控 制器之上为USB核心层,再上层为USB设备驱动层(插入主机上的U盘、鼠标、USB转串口等设备驱动)。因此,在主机侧的层次结构中,要实现的USB驱 动包括两类:USB主机控制器驱动和USB设备驱动,前者控制插入其中的USB设备,后者控制USB设备如何与主机通信。Linux内核USB核心负责 USB驱动管理和协议处理的主要工作。主机控制器驱动和设备驱动之间的USB核心非常重要,其功能包括:通过定义一些数据结构、宏和功能函数,向上为设备
驱动提供编程接口,向下为USB主机控制器驱动提供编程接口;通过全局变量维护整个系统的USB设备信息;完成设备热插拔控制、总线数据传输控制等。

如右下图所示,Linux内核中USB设备侧驱动程序分为3个层次:UDC驱动程序、Gadget API和Gadget驱动程序。UDC驱动程序直接访问硬件,控制USB设备和主机间的底层通信,向上层提供与硬件相关操作的回调函数。当前Gadget API是UDC驱动程序回调函数的简单包装。Gadget驱动程序具体控制USB设备功能的实现,使设备表现出“网络连接”、“打印机”或“USB Mass Storage”等特性,它使用Gadget API控制UDC实现上述功能。Gadget API把下层的UDC驱动程序和上层的Gadget驱动程序隔离开,使得在Linux系统中编写USB设备侧驱动程序时能够把功能的实现和底层通信分离。

以上的图和文字载自 华清远见的《Linux设备驱动开发详解

《LDD3》中的USB驱动的介绍分以下几块:

-----------基础知识部分--------------

(1)USB设备基础

端点

接口

配置

(2)USB和sysfs

(3)USB urb

struct urb

创建和销毁urb

中断urb

批量urb

控制urb

等时urb

提交urb

结束urb:结束回调处理例程

取消urb

-------------------------------

--------驱动编写部分(一)--------------

(4)编写USB驱动程序

驱动支持什么设备

注册USB驱动程序

探测和断开的细节

提交和控制urb

-------------------------------

--------驱动编写部分(二)--------------

(5)不使用urb的USB传输

usb_bulk_msg

usb_control_msg

(6)其他USB数据函数

-------------------------------

USB设备其实很复杂,但是Linux内核提供了一个称为USB core的子系统来处理了大部分的复杂工作,所以这里所描述的是驱动程序和USB core之间的接口。

在USB设备组织结构中,从上到下分为设备(device)、配置(config)、接口(interface)和端点(endpoint)四个层次。

对于这四个层次的简单描述如下:

设备通常具有一个或多个的配置

配置经常具有一个或多个的接口

接口通常具有一个或多个的设置

接口没有或具有一个以上的端点

设备

  很明显,地代表了一个插入的USB设备,在内核使用数据结构 struct usb_device来描述整个USB设备。(include/linux/usb.h)

  struct usb_device
{

   int devnum;
//设备号,是在USB总线的地址

   char devpath [16];
//用于消息的设备ID字符串

   enum usb_device_state state;
//设备状态:已配置、未连接等等

   enum usb_device_speed speed;
//设备速度:高速、全速、低速或错误

  

   struct usb_tt *tt;
//处理传输者信息;用于低速、全速设备和高速HUB

   int ttport;
//位于tt HUB的设备口

  

   unsigned int toggle[2];
//每个端点的占一位,表明端点的方向([0] = IN, [1] = OUT)  

   struct usb_device
*parent; //上一级HUB指针

   struct usb_bus
*bus; //总线指针

   struct usb_host_endpoint ep0;
//端点0数据

   struct device dev;
//一般的设备接口数据结构

 

   struct usb_device_descriptor descriptor;
//USB设备描述符

   struct usb_host_config
*config; //设备的所有配置

   struct usb_host_config
*actconfig; //被激活的设备配置

   struct usb_host_endpoint
*ep_in[16];
//输入端点数组

   struct usb_host_endpoint
*ep_out[16];
//输出端点数组

  

   char **rawdescriptors;
//每个配置的raw描述符

  

   unsigned short bus_mA;
//可使用的总线电流




   u8 portnum;//父端口号

   u8 level; //USB HUB的层数

  

   unsigned can_submit:1;
//URB可被提交标志

   unsigned discon_suspended:1;
//暂停时断开标志

   unsigned persist_enabled:1;
//USB_PERSIST使能标志

   unsigned have_langid:1;
//string_langid存在标志

   unsigned authorized:1;

   unsigned authenticated:1;

   unsigned wusb:1;
//无线USB标志

   int string_langid;
//字符串语言ID

  

   /* static strings from the device */
//设备的静态字符串

   char *product;
//产品名

   char *manufacturer;
//厂商名

   char *serial;
//产品串号

  

   struct list_head filelist;
//此设备打开的usbfs文件

  #ifdef CONFIG_USB_DEVICE_CLASS

   struct device *usb_classdev;
//用户空间访问的为usbfs设备创建的USB类设备

  #endif

  #ifdef CONFIG_USB_DEVICEFS

   struct dentry *usbfs_dentry;
//设备的usbfs入口

  #endif

  

   int maxchild;
//(若为HUB)接口数

   struct usb_device
*children[USB_MAXCHILDREN];//连接在这个HUB上的子设备

   int pm_usage_cnt;
//自动挂起的使用计数

   u32 quirks;

   atomic_t urbnum; //这个设备所提交的URB计数

  

   unsigned long active_duration;
//激活后使用计时

  #ifdef CONFIG_PM
//电源管理相关

   struct delayed_work autosuspend;
//自动挂起的延时

   struct work_struct autoresume;
//(中断的)自动唤醒需求

   struct mutex pm_mutex;
//PM的互斥锁 

 

   unsigned long last_busy;
//最后使用的时间

   int autosuspend_delay;

   unsigned long connect_time;
//第一次连接的时间

  

   unsigned auto_pm:1;
//自动挂起/唤醒

   unsigned do_remote_wakeup:1;
//远程唤醒

   unsigned reset_resume:1;
//使用复位替代唤醒

   unsigned autosuspend_disabled:1;
//挂起关闭

   unsigned autoresume_disabled:1;
//唤醒关闭

   unsigned skip_sys_resume:1;
//跳过下个系统唤醒

  #endif

   struct wusb_dev
*wusb_dev; //(如果为无线USB)连接到WUSB特定的数据结构

  };

配置

一个USB设备可以有多个配置,并可在它们之间转换以改变设备的状态。比如一个设备可以通过下载固件(firmware)的方式改变设备的使用状态(我 感觉类似FPGA或CPLD),那么USB设备就要切换配置,来完成这个工作。一个时刻只能有一个配置可以被激活。Linux使用结构 struct usb_host_config 来描述USB配置。我们编写的USB设备驱动通常不需要读写这些结构的任何值。可在内核源码的文件include/linux/usb.h中找到对它们的 描述。

struct usb_host_config
{

struct usb_config_descriptor desc;
//配置描述符

char *string;
/* 配置的字符串指针(如果存在) */

struct usb_interface_assoc_descriptor
*intf_assoc[USB_MAXIADS];
//配置的接口联合描述符链表

struct usb_interface
*interface[USB_MAXINTERFACES];
//接口描述符链表

struct usb_interface_cache
*intf_cache[USB_MAXINTERFACES];

unsigned char
*extra;
/* 额外的描述符 */

int extralen;

};


接口

USB 端点被绑为接口,USB接口只处理一种USB逻辑连接。一个USB接口代表一个基本功能,每个USB驱动控制一个接口。所以一个物理上的硬件设备可能需要 一个以上的驱动程序。这可以在“晕到死 差屁”系统中看出,有时插入一个USB设备后,系统会识别出多个设备,并安装相应多个的驱动。

USB 接口可以有其他的设置,它是对接口参数的不同选择. 接口的初始化的状态是第一个设置,编号为0。 其他的设置可以以不同方式控制独立的端点。

USB接口在内核中使用 struct usb_interface 来描述。USB 核心将其传递给USB驱动,并由USB驱动负责后续的控制。

struct usb_interface
{

struct usb_host_interface
*altsetting;
/* 包含所有可用于该接口的可选设置的接口结构数组。每个 struct usb_host_interface 包含一套端点配置(即struct usb_host_endpoint结构所定义的端点配置。这些接口结构没有特别的顺序。*/

struct usb_host_interface
*cur_altsetting;
/* 指向altsetting内部的指针,表示当前激活的接口配置*/

unsigned num_altsetting;
/* 可选设置的数量*/

/* If there is an interface association descriptor then it will list the associated interfaces */

struct usb_interface_assoc_descriptor
*intf_assoc;

int minor;
/* 如果绑定到这个接口的 USB 驱动使用 USB 主设备号, 这个变量包含由 USB 核心分配给接口的次设备号. 这只在一个成功的调用 usb_register_dev后才有效。*/

/*以下的数据在我们写的驱动中基本不用考虑,系统会自动设置*/

enum usb_interface_condition condition;
/* state of binding */

unsigned is_active:1;
/* the interface is not suspended */

unsigned sysfs_files_created:1;
/* the sysfs attributes exist */

unsigned ep_devs_created:1;
/* endpoint "devices" exist */

unsigned unregistering:1;
/* unregistration is in progress */

unsigned needs_remote_wakeup:1;
/* driver requires remote wakeup */

unsigned needs_altsetting0:1;
/* switch to altsetting 0 is pending */

unsigned needs_binding:1;
/* needs delayed unbind/rebind */

unsigned reset_running:1;

struct device dev;
/* 接口特定的设备信息 */

struct device
*usb_dev;

int pm_usage_cnt;
/* usage counter for autosuspend */

struct work_struct reset_ws;
/* for resets in atomic context */

};

struct usb_host_interface
{

struct usb_interface_descriptor desc;
//接口描述符

struct usb_host_endpoint
*endpoint;
/* 这个接口的所有端点结构体的联合数组*/

char *string;
/* 接口描述字符串 */

unsigned char
*extra;
/* 额外的描述符 */

int extralen;

};


端点

USB 通讯的最基本形式是通过一个称为端点的东西。一个USB端点只能向一个方向传输数据(从主机到设备(称为输出端点)或者从设备到主机(称为输入端点))。端点可被看作一个单向的管道。

一个 USB 端点有 4 种不同类型, 分别具有不同的数据传送方式:

控制CONTROL

控 制端点被用来控制对 USB 设备的不同部分访问. 通常用作配置设备、获取设备信息、发送命令到设备或获取设备状态报告。这些端点通常较小。每个 USB 设备都有一个控制端点称为"端点 0", 被 USB 核心用来在插入时配置设备。USB协议保证总有足够的带宽留给控制端点传送数据到设备.

中断INTERRUPT

每当 USB 主机向设备请求数据时,中断端点以固定的速率传送小量的数据。此为USB 键盘和鼠标的主要的数据传送方法。它还用以传送数据到 USB 设备来控制设备。通常不用来传送大量数据。USB协议保证总有足够的带宽留给中断端点传送数据到设备.

批量BULK

批 量端点用以传送大量数据。这些端点常比中断端点大得多. 它们普遍用于不能有任何数据丢失的数据。USB 协议不保证传输在特定时间范围内完成。如果总线上没有足够的空间来发送整个BULK包,它被分为多个包进行传输。这些端点普遍用于打印机、USB Mass Storage和USB网络设备上。

等时ISOCHRONOUS

等时端点也批量传送大量数据, 但是这个数据不被保证能送达。这些端点用在可以处理数据丢失的设备中,并且更多依赖于保持持续的数据流。如音频和视频设备等等。

控制和批量端点用于异步数据传送,而中断和同步端点是周期性的。这意味着这些端点被设置来在固定的时间连续传送数据,USB 核心为它们保留了相应的带宽。

端点在内核中使用结构 struct usb_host_endpoint 来描述,它所包含的真实端点信息在另一个结构中:struct usb_endpoint_descriptor(端点描述符,包含所有的USB特定数据)。

struct usb_host_endpoint
{

struct usb_endpoint_descriptor desc;
//端点描述符

struct list_head urb_list;
//此端点的URB对列,由USB核心维护

void *hcpriv;

struct ep_device
*ep_dev; /* For sysfs info */

unsigned char
*extra;
/* Extra descriptors */

int extralen;

int enabled;

};

/*-------------------------------------------------------------------------*/

/* USB_DT_ENDPOINT: Endpoint descriptor */

struct usb_endpoint_descriptor
{

__u8 bLength;

__u8 bDescriptorType;

__u8 bEndpointAddress;
/*这个特定端点的 USB 地址,这个8位数据包含端点的方向,结合位掩码 USB_DIR_OUT 和 USB_DIR_IN 使用, 确定这个端点的数据方向。*/

__u8 bmAttributes; //这是端点的类型,位掩码如下

__le16 wMaxPacketSize;
/*端点可以一次处理的最大字节数。驱动可以发送比这个值大的数据量到端点, 但是当真正传送到设备时,数据会被分为 wMaxPakcetSize 大小的块。对于高速设备, 通过使用高位部分几个额外位,可用来支持端点的高带宽模式。*/

__u8 bInterval;
//如果端点是中断类型,该值是端点的间隔设置,即端点的中断请求间的间隔时间,以毫秒为单位

/* NOTE: these two are _only_ in audio endpoints. */

/* use USB_DT_ENDPOINT*_SIZE in bLength, not sizeof. */

__u8 bRefresh;

__u8 bSynchAddress;

} __attribute__ ((packed));

#define USB_DT_ENDPOINT_SIZE 7

#define USB_DT_ENDPOINT_AUDIO_SIZE 9
/* Audio extension */

/*

* Endpoints

*/

#define USB_ENDPOINT_NUMBER_MASK 0x0f
/* in bEndpointAddress 端点的 USB 地址掩码 */

#define USB_ENDPOINT_DIR_MASK 0x80
/* in bEndpointAddress 数据方向掩码 */


#define USB_DIR_OUT 0
/* to device */

#define USB_DIR_IN 0x80
/* to host */

#define USB_ENDPOINT_XFERTYPE_MASK 0x03
/* bmAttributes 的位掩码*/

#define USB_ENDPOINT_XFER_CONTROL 0

#define USB_ENDPOINT_XFER_ISOC 1

#define USB_ENDPOINT_XFER_BULK 2

#define USB_ENDPOINT_XFER_INT 3

#define USB_ENDPOINT_MAX_ADJUSTABLE 0x80

/*-------------------------------------------------------------------------*/


USB 和 sysfs

由于单个 USB 物理设备的复杂性,设备在 sysfs 中的表示也非常复杂。物理 USB 设备(通过 struct usb_device 表示)和单个 USB 接口(由 struct usb_interface 表示)都作为单个设备出现在 sysfs 中,这是因为这两个结构都包含一个 struct device结构。以下内容是我的USB鼠标在 sysfs 中的目录树:

/sys/devices/pci0000:00/0000:00:1a.0/usb3/3-1
(表示 usb_device 结构)

.

|-- 3-1:1.0
(鼠标所对应的usb_interface)

| |-- 0003:046D:C018.0003

| |
|-- driver
->
../../../../../../../bus/hid/drivers/generic-usb

| |
|-- power

| |
| `-- wakeup

| |
|-- subsystem
->
../../../../../../../bus/hid

| | `-- uevent

| |-- bAlternateSetting

| |-- bInterfaceClass

| |-- bInterfaceNumber

| |-- bInterfaceProtocol

| |-- bInterfaceSubClass

| |-- bNumEndpoints

| |-- driver
->
../../../../../../bus/usb/drivers/usbhid

| |-- ep_81
-> usb_endpoint/usbdev3.4_ep81

| |-- input

| | `-- input6

| |
|-- capabilities

| |
| |--
abs

| |
| |-- ev

| |
| |-- ff

| |
| |-- key

| |
| |-- led

| |
| |-- msc

| |
| |-- rel

| |
| |-- snd

| |
| `-- sw

| |
|-- device
->
../../../3-1:1.0

| |
|-- event3

| |
| |-- dev

| |
| |-- device
->
../../input6

| |
| |-- power

| |
| | `-- wakeup

| |
| |-- subsystem
->
../../../../../../../../../class/input

| |
| `-- uevent

| |
|-- id

| |
| |-- bustype

| |
| |-- product

| |
| |-- vendor

| |
| `-- version

| |
|-- modalias

| |
|-- mouse1

| |
| |-- dev

| |
| |-- device
->
../../input6

| |
| |-- power

| |
| | `-- wakeup

| |
| |-- subsystem
->
../../../../../../../../../class/input

| |
| `-- uevent

| |
|-- name

| |
|-- phys

| |
|-- power

| |
| `-- wakeup

| |
|-- subsystem
->
../../../../../../../../class/input

| |
|-- uevent

| | `-- uniq

| |-- modalias

| |-- power

| | `-- wakeup

| |-- subsystem
->
../../../../../../bus/usb

| |-- supports_autosuspend

| |-- uevent

| `-- usb_endpoint

| `-- usbdev3.4_ep81

| |-- bEndpointAddress

| |-- bInterval

| |-- bLength

| |-- bmAttributes

| |-- dev

| |-- device
->
../../../3-1:1.0

| |-- direction

| |-- interval

| |-- power

| | `-- wakeup

| |-- subsystem
->
../../../../../../../../class/usb_endpoint

| |-- type

| |-- uevent

| `-- wMaxPacketSize

|-- authorized

|-- bConfigurationValue

|-- bDeviceClass

|-- bDeviceProtocol

|-- bDeviceSubClass

|-- bMaxPacketSize0

|-- bMaxPower

|-- bNumConfigurations

|-- bNumInterfaces

|-- bcdDevice

|-- bmAttributes

|-- busnum

|-- configuration

|-- descriptors

|-- dev

|-- devnum

|-- driver
->
../../../../../bus/usb/drivers/usb

|-- ep_00
-> usb_endpoint/usbdev3.4_ep00

|-- idProduct

|-- idVendor

|-- manufacturer

|-- maxchild

|-- power

| |-- active_duration

| |-- autosuspend

| |-- connected_duration

| |-- level

| |-- persist

| `-- wakeup

|-- product

|-- quirks

|-- speed

|-- subsystem
->
../../../../../bus/usb

|-- uevent

|-- urbnum

|-- usb_endpoint

| `-- usbdev3.4_ep00

| |-- bEndpointAddress

| |-- bInterval

| |-- bLength

| |-- bmAttributes

| |-- dev

| |-- device
->
../../../3-1

| |-- direction

| |-- interval

| |-- power

| | `-- wakeup

| |-- subsystem
->
../../../../../../../class/usb_endpoint

| |-- type

| |-- uevent

| `-- wMaxPacketSize

`-- version

38 directories, 91 files


USB sysfs 设备命名方法是: root_hub-hub_port:config.interface



随着USB集线器层次的增加, 集线器端口号被添加到字符串中紧随着链中之前的集线器端口号。对一个 2 层的树, 设备为: root_hub-hub_port-hub_port:config.interface ,以此类推。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: