您的位置:首页 > 理论基础 > 数据结构算法

※数据结构※→☆非线性结构(tree)☆============二叉搜索树(二叉查找树) 链式存储结构(tree Binary Search list)(二十五)

2013-10-25 17:31 801 查看
二叉搜索树(二叉查找树)

二叉查找树(Binary Search Tree),或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。

原理

二叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树的存储结构。中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。搜索,插入,删除的复杂度等于树高,O(log(n)).

算法

查找算法

在二叉排序树b中查找x的过程为:

若b是空树,则搜索失败,否则:

若x等于b的根结点的数据域之值,则查找成功;否则:

若x小于b的根结点的数据域之值,则搜索左子树;否则:

查找右子树。

/**
* GetNode
*
* @param	const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param	const KEY& tKey <IN> 
* @return	const AL_TreeNodeBinSearchList<T, KEY>* 
* @note		for Recursion search
* @attention
*/
template<typename T, typename KEY> const AL_TreeNodeBinSearchList<T, KEY>* 
AL_TreeBinSearchList<T, KEY>::GetNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, const KEY& tKey)
{
	if (NULL == pCurTreeNode) {
		return NULL;
	}

	if (tKey < pCurTreeNode->GetKey()) {
		//search the left child
		return GetNode(pCurTreeNode->GetChildLeft(), tKey);
	}
	else if (pCurTreeNode->GetKey() < tKey) {
		//search the right child
		return GetNode(pCurTreeNode->GetChildRight(), tKey);
	}
	else {
		//find it, pCurTreeNode->GetKey() == tKey
		return pCurTreeNode;
	}
	
	//Recursion End
	return NULL;
}


插入算法

向一个二叉排序树b中插入一个结点s的算法,过程为:

若b是空树,则将s所指结点作为根结点插入,否则:

若s->data等于b的根结点的数据域之值,则返回,否则:

若s->data小于b的根结点的数据域之值,则把s所指结点插入到左子树中,否则:

把s所指结点插入到右子树中。

1.若当前的二叉查找树为空,则插入的元素为根节点,
2.若插入的元素值小于根节点值,则将元素插入到左子树中,
3.若插入的元素值不小于根节点值,则将元素插入到右子树中。

/**
* Insert
*
* @param	const AL_TreeNodeBinSearchList<T, KEY>* pRecursionNode <IN> 
* @param	const T& tData <IN> 
* @param	const KEY& tKey <IN> 
* @return	BOOL
* @note		for Recursion Insert
* @attention if pRecursionNode may be NULL
*/
template<typename T, typename KEY> BOOL 
AL_TreeBinSearchList<T, KEY>::Insert(const AL_TreeNodeBinSearchList<T, KEY>* pRecursionNode, const T& tData, const KEY& tKey)
{
	if (TRUE == IsEmpty()) {
		if (NULL != pRecursionNode) {
			//empty, but has the node
			return FALSE;
		}
		//has no root node, insert as root node
		return InsertAtNode(NULL, 0x00, tData, tKey);
	}
	
	static const AL_TreeNodeBinSearchList<T, KEY>* pRecursionNodePre = NULL;		//store the previous node of recursion
	if (NULL == pRecursionNode) {
		if (NULL == pRecursionNodePre) {
			//some thing wrong
			return FALSE;
		}
		//inset to the current tree node
		if (NULL == pRecursionNodePre->GetChildLeft() && NULL == pRecursionNodePre->GetChildRight()) {
			//left and right all NULL
			if (tKey < pRecursionNodePre->GetKey()) {
				//insert the left child
				return InsertLeftAtNode(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pRecursionNodePre), tData, tKey);
			}
			else if (pRecursionNodePre->GetKey() < tKey) {
				//insert the right child
				return InsertRightAtNode(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pRecursionNodePre), tData, tKey);
			}
			else {
				//error, can not have the same key
				return FALSE;
			}
		}
		else if (NULL == pRecursionNodePre->GetChildLeft() && NULL != pRecursionNodePre->GetChildRight()) {
			//left NULL, right not NULL
			if (tKey < pRecursionNodePre->GetKey()) {
				//insert the left child
				return InsertLeftAtNode(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pRecursionNodePre), tData, tKey);
			}
			else {
				//error, can not have the same key
				return FALSE;
			}
		}
		else if (NULL != pRecursionNodePre->GetChildLeft() && NULL == pRecursionNodePre->GetChildRight()) {
			//left not NULL, right NULL
			if (pRecursionNodePre->GetKey() < tKey) {
				return InsertRightAtNode(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pRecursionNodePre), tData, tKey);
			}
			else {
				return FALSE;
			}
		}
		else {
			//left not NULL, right not NULL
			return FALSE;
		}
	}
	pRecursionNodePre = pRecursionNode;
	if (tKey < pRecursionNode->GetKey()) {
		//recursion the left child (Insert)
		return Insert(pRecursionNode->GetChildLeft(), tData, tKey);
	}
	else if (pRecursionNode->GetKey() < tKey) {
		//recursion the right child (Insert)
		return Insert(pRecursionNode->GetChildRight(), tData, tKey);
	}
	else {
		//error, can not have the same key
		return FALSE;
	}

	//Recursion End
	return FALSE;
}


删除算法

在二叉排序树删去一个结点,分三种情况讨论:

若*p结点为叶子结点,即PL(左子树)和PR(右子树)均为空树。由于删去叶子结点不破坏整棵树的结构,则只需修改其双亲结点的指针即可。

若*p结点只有左子树PL或右子树PR,此时只要令PL或PR直接成为其双亲结点*f的左子树或右子树即可,作此修改也不破坏二叉排序树的特性。

若*p结点的左子树和右子树均不空。在删去*p之后,为保持其它元素之间的相对位置不变,可按中序遍历保持有序进行调整,可以有两种做法:其一是令*p的左子树为*f的左子树,*s为*f左子树的最右下的结点,而*p的右子树为*s的右子树;其二是令*p的直接前驱(或直接后继)替代*p,然后再从二叉排序树中删去它的直接前驱(或直接后继)。

1.p为叶子节点,直接删除该节点,再修改其父节点的指针(注意分是根节点和不是根节点),如图a。



2.p为单支节点(即只有左子树或右子树)。让p的子树与p的父亲节点相连,删除p即可;(注意分是根节点和不是根节点);如图b。



3.p的左子树和右子树均不空。找到p的后继y,因为y一定没有左子树,所以可以删除y,并让y的父亲节点成为y的右子树的父亲节点,并用y的值代替p的值;或者方法二是找到p的前驱x,x一定没有右子树,所以可以删除x,并让x的父亲节点成为y的左子树的父亲节点。如图c。



//insert current node's child to the replace node
		pChildLeft->RemoveParent();
		pChildRight->RemoveParent();
		if (pReplace != pChildLeft) {
			if (FALSE == pReplace->InsertLeft(pChildLeft)) {
					return FALSE;
			}
		}
		if (pReplace != pChildRight) {
			if (FALSE == pReplace->InsertRight(pChildRight)) {
				return FALSE;
			}
		}


ps: 注意替代的结点是否为删除结点的子结点。不然会将自己本身作为自己的子结点插入。

/**
* RemoveNode
*
* @param AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @return BOOL
* @note
* @attention the current tree node must be in the tree, only remove current node and not include it's descendant note
1). p a leaf node, just delete the node, and then modify its parent node pointer (note points is the root node and not
the root);
2). p for the single node (ie, only the left subtree or right subtree). Let p and p subtree connected to the node's father,
then delete p; (note points is the root node and not the root);
3). p left subtree and right subtree are not empty. Find p's successor y, because y certainly no left subtree, so you can
delete y, and let y father node becomes y's right subtree father node, and use the value of y instead of p values​​; or
method two is to find p precursor x, x certainly no right subtree, so you can delete x, and let x, y father node becomes
the father of the left subtree of the node;
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::RemoveNode(AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode)
{
if (NULL == pCurTreeNode) {
return FALSE;
}

AL_TreeNodeBinSearchList<T, KEY>* pCurNodeParent = NULL;
if (TRUE == pCurTreeNode->IsLeaf()) {
// if (0x00 == pCurTreeNode->GetDegree()) {
//leaf node; see 1)
pCurNodeParent = pCurTreeNode->GetParent();
if (NULL != pCurNodeParent) {
if (FALSE == pCurNodeParent->Remove(pCurTreeNode)) {
return FALSE;
}
}
else {
//root node
if (m_pRootNode == pCurTreeNode) {
//judge root node
m_pRootNode = NULL;
}
else {
return FALSE;
}
}
}
else if (0x01 == pCurTreeNode->GetDegree()) {
//not leaf node, single node; see 2)
//get the child node
AL_TreeNodeBinSearchList<T, KEY>* pChildeNode = NULL;
if (NULL != pCurTreeNode->GetChildLeft()) {
//left child exist
pChildeNode = pCurTreeNode->GetChildLeft();
}
if (NULL != pCurTreeNode->GetChildRight()) {
//right child exist
pChildeNode = pCurTreeNode->GetChildRight();
}

if (NULL == pChildeNode) {
//can not get child node
return FALSE;
}
pChildeNode->RemoveParent();

pCurNodeParent = pCurTreeNode->GetParent();
if (NULL != pCurNodeParent) {
if (pCurTreeNode == pCurNodeParent->GetChildLeft()) {
//current node as child left exist
pCurNodeParent->Remove(pCurTreeNode);
if (FALSE == pCurNodeParent->InsertLeft(pChildeNode)) {
return FALSE;
}
}
else {
//current node as child right exist
pCurNodeParent->Remove(pCurTreeNode);
if (FALSE == pCurNodeParent->InsertRight(pChildeNode)) {
return FALSE;
}
}
}
else {
//root node
if (m_pRootNode == pCurTreeNode) {
//judge root node
m_pRootNode = pChildeNode;
}
else {
return FALSE;
}
}
}
else if (0x02 == pCurTreeNode->GetDegree()){
// left and right are not empty; see 3)
AL_TreeNodeBinSearchList<T, KEY>* pChildLeft = pCurTreeNode->GetChildLeft();
AL_TreeNodeBinSearchList<T, KEY>* pChildRight = pCurTreeNode->GetChildRight();
if (NULL == pChildLeft|| NULL == pChildRight) {
//the left or right child not exist
return FALSE;
}
AL_TreeNodeBinSearchList<T, KEY>* pReplace = NULL;
if (FALSE == GetSuccessor(pChildLeft, pReplace)) {
//get the successor failed
return FALSE;
}
if (NULL == pReplace) {
//get the successor failed
return FALSE;
}

//pReplace must have not the right child
if (NULL != pReplace->GetChildRight()) {
//judge it
return FALSE;
}

AL_TreeNodeBinSearchList<T, KEY>* pReplaceParent = pReplace->GetParent();
if (NULL == pReplaceParent) {
return FALSE;
}
AL_TreeNodeBinSearchList<T, KEY>* pReplaceChildLeft = pReplace->GetChildLeft();
if (FALSE == pReplaceParent->Remove(pReplace)
|| FALSE == pReplace->RemoveParent()
|| FALSE == pReplace->Remove(pReplaceChildLeft)) {
return FALSE;
}

if (NULL != pReplaceChildLeft) {
//left child exist
pReplaceChildLeft->RemoveParent();
if (FALSE == pReplaceParent->InsertRight(pReplaceChildLeft)) {
return FALSE;
}
}

//insert current node's child to the replace node pChildLeft->RemoveParent(); pChildRight->RemoveParent(); if (pReplace != pChildLeft) { if (FALSE == pReplace->InsertLeft(pChildLeft)) { return FALSE; } } if (pReplace != pChildRight) { if (FALSE == pReplace->InsertRight(pChildRight)) { return FALSE; } }

pCurNodeParent = pCurTreeNode->GetParent();
if (NULL != pCurNodeParent) {
//current node has parent
if (pCurTreeNode == pCurNodeParent->GetChildLeft()) {
//current node as child left exist
pCurNodeParent->Remove(pCurTreeNode);
if (FALSE == pCurNodeParent->InsertLeft(pReplace)) {
return FALSE;
}
}
else {
//current node as child right exist
pCurNodeParent->Remove(pCurTreeNode);
if (FALSE == pCurNodeParent->InsertRight(pReplace)) {
return FALSE;
}
}
}
else {
if (m_pRootNode == pCurTreeNode) {
//root node
m_pRootNode = pReplace;
}
else {
return FALSE;
}
}
}
else {
//Binary Search Tree only two child node, can not be this case
return FALSE;
}

//delete the current node
pCurTreeNode->Clear();
delete pCurTreeNode;
pCurTreeNode = NULL;

m_dwNumNodes--;
return TRUE;
}


======================================================================================================

二叉树

在计算机科学中,二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用作二叉查找树和二叉堆或是二叉排序树。二叉树的每个结点至多只有二棵子树(不存在出度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2的 i -1次方个结点;深度为k的二叉树至多有2^(k) -1个结点;对任何一棵二叉树T,如果其终端结点数(即叶子结点数)为,出度为2的结点数为,则=+
1。

基本形态

二叉树也是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态:

(1)空二叉树——(a);

(2)只有一个根结点的二叉树——(b);

(3)只有左子树——(c);

(4)只有右子树——(d);

(5)完全二叉树——(e)

注意:尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。

重要概念

(1)完全二叉树——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。

(2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。

(3)深度——二叉树的层数,就是高度。

性质

(1) 在二叉树中,第i层的结点总数不超过2^(i-1);

(2) 深度为h的二叉树最多有2^h-1个结点(h>=1),最少有h个结点;

(3) 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;

(4) 具有n个结点的完全二叉树的深度为int(log2n)+1

(5)有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:

若I为结点编号则 如果I>1,则其父结点的编号为I/2;

如果2*I<=N,则其左儿子(即左子树的根结点)的编号为2*I;若2*I>N,则无左儿子;

如果2*I+1<=N,则其右儿子的结点编号为2*I+1;若2*I+1>N,则无右儿子。

(6)给定N个节点,能构成h(N)种不同的二叉树。

h(N)为卡特兰数的第N项。h(n)=C(n,2*n)/(n+1)。

(7)设有i个枝点,I为所有枝点的道路长度总和,J为叶的道路长度总和J=I+2i

1.完全二叉树 (Complete Binary Tree)

若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层从右向左连续缺若干结点,这就是完全二叉树。

2.满二叉树 (Full Binary Tree)

一个高度为h的二叉树包含正是2^h-1元素称为满二叉树。



二叉树四种遍历

1.先序遍历 (仅二叉树)

指先访问根,然后访问孩子的遍历方式

非递归实现

利用栈实现,先取根节点,处理节点,然后依次遍历左节点,遇到有右节点压入栈,向左走到尽头。然后从栈中取出右节点,处理右子树。

/*** PreOrderTraversal
*
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	BOOL
* @note Pre-order traversal
* @attention 
*/
template<typename T> BOOL 
AL_TreeBinSeq<T>::PreOrderTraversal(AL_ListSeq<T>& listOrder) const
{
	if (NULL == m_pRootNode) {
		return FALSE;
	}

	listOrder.Clear();

	//Recursion Traversal
	PreOrderTraversal(m_pRootNode, listOrder);
	return TRUE;
	
	//Not Recursion Traversal
	AL_StackSeq<AL_TreeNodeBinSeq<T>*> cStack;
	AL_TreeNodeBinSeq<T>* pTreeNode = m_pRootNode;

	while (TRUE != cStack.IsEmpty() || NULL != pTreeNode) {
		while (NULL != pTreeNode) {
			listOrder.InsertEnd(pTreeNode->GetData());
			if (NULL != pTreeNode->GetChildRight()) {
				//push the child right to stack
				cStack.Push(pTreeNode->GetChildRight());
			}
			pTreeNode = pTreeNode->GetChildLeft();
		}

		if (TRUE == cStack.Pop(pTreeNode)) {
			if (NULL == pTreeNode) {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
		
	}
	return TRUE;
}


递归实现

/**
* PreOrderTraversal
*
* @param	const AL_TreeNodeBinSeq<T>* pCurTreeNode <IN>	
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	VOID
* @note Pre-order traversal
* @attention Recursion Traversal
*/
template<typename T> VOID 
AL_TreeBinSeq<T>::PreOrderTraversal(const AL_TreeNodeBinSeq<T>* pCurTreeNode, AL_ListSeq<T>& listOrder) const
{
	if (NULL == pCurTreeNode) {
		return;
	}
	//Do Something with root
	listOrder.InsertEnd(pCurTreeNode->GetData());

	if(NULL != pCurTreeNode->GetChildLeft()) {
		PreOrderTraversal(pCurTreeNode->GetChildLeft(), listOrder);
	}

	if(NULL != pCurTreeNode->GetChildRight()) {
		PreOrderTraversal(pCurTreeNode->GetChildRight(), listOrder);
	}
}


2.中序遍历(仅二叉树)

指先访问左(右)孩子,然后访问根,最后访问右(左)孩子的遍历方式

非递归实现
利用栈实现,先取根节点,然后依次遍历左节点,将左节点压入栈,向左走到尽头。然后从栈中取出左节点,处理节点。然后处理其右子树。

/**
* InOrderTraversal
*
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	BOOL
* @note In-order traversal
* @attention 
*/
template<typename T> BOOL 
AL_TreeBinSeq<T>::InOrderTraversal(AL_ListSeq<T>& listOrder) const
{
	if (NULL == m_pRootNode) {
		return FALSE;
	}

	listOrder.Clear();
	
	//Recursion Traversal
	InOrderTraversal(m_pRootNode, listOrder);
	return TRUE;

	//Not Recursion Traversal
	AL_StackSeq<AL_TreeNodeBinSeq<T>*> cStack;
	AL_TreeNodeBinSeq<T>* pTreeNode = m_pRootNode;

	while (TRUE != cStack.IsEmpty() || NULL != pTreeNode) {
		while (NULL != pTreeNode) {
			cStack.Push(pTreeNode);
			pTreeNode = pTreeNode->GetChildLeft();
		}

		if (TRUE == cStack.Pop(pTreeNode)) {
			if (NULL !=  pTreeNode) {
				listOrder.InsertEnd(pTreeNode->GetData());
				if (NULL != pTreeNode->GetChildRight()){
					//child right exist, push the node, and loop it's left child to push
					pTreeNode = pTreeNode->GetChildRight();
				}
				else {
					//to pop the node in the stack
					pTreeNode = NULL;
				}
			}
			else {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
	}

	return TRUE;
}


递归实现
/**
* InOrderTraversal
*
* @param	const AL_TreeNodeBinSeq<T>* pCurTreeNode <IN>	
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	VOID
* @note In-order traversal
* @attention Recursion Traversal
*/
template<typename T> VOID 
AL_TreeBinSeq<T>::InOrderTraversal(const AL_TreeNodeBinSeq<T>* pCurTreeNode, AL_ListSeq<T>& listOrder) const
{
	if (NULL == pCurTreeNode) {
		return;
	}
	
	if(NULL != pCurTreeNode->GetChildLeft()) {
		InOrderTraversal(pCurTreeNode->GetChildLeft(), listOrder);
	}

	//Do Something with root
	listOrder.InsertEnd(pCurTreeNode->GetData());

	if(NULL != pCurTreeNode->GetChildRight()) {
		InOrderTraversal(pCurTreeNode->GetChildRight(), listOrder);
	}
}


3.后序遍历(仅二叉树)

指先访问孩子,然后访问根的遍历方式

非递归实现

利用栈实现,先取根节点,然后依次遍历左节点,将左节点压入栈,向左走到尽头。然后从栈中取出左节点,处理节点。处理其右节点,还需要记录已经使用过的节点,比较麻烦和复杂。大致思路如下:

1.找到最左边的子节点
2.如果最左边的子节点有右节点,处理右节点(类似1)
3.从栈里弹出节点处理
3.当碰到左右节点都存在的节点时,需要进行记录了回归节点了。然后以当前节点的右子树进行处理
4.碰到回归节点时,把当前的最后一个元素消除(因为后面还会回归到这个点的)。

/**
* PostOrderTraversal
*
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	BOOL
* @note Post-order traversal
* @attention 
*/
template<typename T> BOOL 
AL_TreeBinSeq<T>::PostOrderTraversal(AL_ListSeq<T>& listOrder) const
{
	if (NULL == m_pRootNode) {
		return FALSE;
	}

	listOrder.Clear();

	//Recursion Traversal
	PostOrderTraversal(m_pRootNode, listOrder);
	return TRUE;

	//Not Recursion Traversal
	AL_StackSeq<AL_TreeNodeBinSeq<T>*> cStack;
	AL_TreeNodeBinSeq<T>* pTreeNode = m_pRootNode;
	AL_StackSeq<AL_TreeNodeBinSeq<T>*> cStackReturn;
	AL_TreeNodeBinSeq<T>* pTreeNodeReturn = NULL;

	while (TRUE != cStack.IsEmpty() || NULL != pTreeNode) {
		while (NULL != pTreeNode) {
			cStack.Push(pTreeNode);
			if (NULL != pTreeNode->GetChildLeft()) {
				pTreeNode = pTreeNode->GetChildLeft();
			}
			else {
				//has not left child, get the right child
				pTreeNode = pTreeNode->GetChildRight();
			}
		}

		if (TRUE == cStack.Pop(pTreeNode)) {
			if (NULL !=  pTreeNode) {
				listOrder.InsertEnd(pTreeNode->GetData());
				if (NULL != pTreeNode->GetChildLeft() && NULL != pTreeNode->GetChildRight()){
					//child right exist
					cStackReturn.Top(pTreeNodeReturn);
					if (pTreeNodeReturn != pTreeNode) {
						listOrder.RemoveAt(listOrder.Length()-1);
						cStack.Push(pTreeNode);
						cStackReturn.Push(pTreeNode);
						pTreeNode = pTreeNode->GetChildRight();
					}
					else {
						//to pop the node in the stack
						cStackReturn.Pop(pTreeNodeReturn);
						pTreeNode = NULL;
					}
				}
				else {
					//to pop the node in the stack
					pTreeNode = NULL;
				}
			}
			else {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
	}

	return TRUE;
}


递归实现
/**
* PostOrderTraversal
*
* @param	const AL_TreeNodeBinSeq<T>* pCurTreeNode <IN>	
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	VOID
* @note Post-order traversal
* @attention Recursion Traversal
*/
template<typename T> VOID 
AL_TreeBinSeq<T>::PostOrderTraversal(const AL_TreeNodeBinSeq<T>* pCurTreeNode, AL_ListSeq<T>& listOrder) const
{
	if (NULL == pCurTreeNode) {
		return;
	}

	if(NULL != pCurTreeNode->GetChildLeft()) {
		PostOrderTraversal(pCurTreeNode->GetChildLeft(), listOrder);
	}

	if(NULL != pCurTreeNode->GetChildRight()) {
		PostOrderTraversal(pCurTreeNode->GetChildRight(), listOrder);
	}

	//Do Something with root
	listOrder.InsertEnd(pCurTreeNode->GetData());
}


4.层次遍历

一层一层的访问,所以一般用广度优先遍历。

非递归实现
利用链表或者队列均可实现,先取根节点压入链表或者队列,依次从左往右体访问子节点,压入链表或者队列。直至处理完所有节点。

/**
* LevelOrderTraversal
*
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	BOOL
* @note Level-order traversal
* @attention 
*/
template<typename T> BOOL 
AL_TreeBinSeq<T>::LevelOrderTraversal(AL_ListSeq<T>& listOrder) const
{
	if (TRUE == IsEmpty()) {
		return FALSE;
	}

	if (NULL == m_pRootNode) {
		return FALSE;
	}
	listOrder.Clear();
	/*
	AL_ListSeq<AL_TreeNodeBinSeq<T>*> listNodeOrder;
	listNodeOrder.InsertEnd(m_pRootNode);
	//loop the all node
	DWORD dwNodeOrderLoop = 0x00;
	AL_TreeNodeBinSeq<T>* pNodeOrderLoop = NULL;
	AL_TreeNodeBinSeq<T>* pNodeOrderChild = NULL;
	while (TRUE == listNodeOrder.Get(pNodeOrderLoop, dwNodeOrderLoop)) {
		dwNodeOrderLoop++;
		if (NULL != pNodeOrderLoop) {
			listOrder.InsertEnd(pNodeOrderLoop->GetData());
			pNodeOrderChild = pNodeOrderLoop->GetChildLeft();
			if (NULL != pNodeOrderChild) {
				queueOrder.Push(pNodeOrderChild);
			}
			pNodeOrderChild = pNodeOrderLoop->GetChildRight();
			if (NULL != pNodeOrderChild) {
				queueOrder.Push(pNodeOrderChild);
			}
		}
		else {
			//error
			return FALSE;
		}
	}
	return TRUE;
	*/
	
	AL_QueueSeq<AL_TreeNodeBinSeq<T>*> queueOrder;
	queueOrder.Push(m_pRootNode);
	
	AL_TreeNodeBinSeq<T>* pNodeOrderLoop = NULL;
	AL_TreeNodeBinSeq<T>* pNodeOrderChild = NULL;
	while (FALSE == queueOrder.IsEmpty()) {
		if (TRUE == queueOrder.Pop(pNodeOrderLoop)) {
			if (NULL != pNodeOrderLoop) {
				listOrder.InsertEnd(pNodeOrderLoop->GetData()); 
				pNodeOrderChild = pNodeOrderLoop->GetChildLeft();
				if (NULL != pNodeOrderChild) {
					queueOrder.Push(pNodeOrderChild);
				}
				pNodeOrderChild = pNodeOrderLoop->GetChildRight();
				if (NULL != pNodeOrderChild) {
					queueOrder.Push(pNodeOrderChild);
				}
			}
			else {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
	}
	return TRUE;
}


递归实现 (无)

======================================================================================================

树(tree)

树(tree)是包含n(n>0)个结点的有穷集合,其中:

每个元素称为结点(node);
有一个特定的结点被称为根结点或树根(root)。
除根结点之外的其余数据元素被分为m(m≥0)个互不相交的集合T1,T2,……Tm-1,其中每一个集合Ti(1<=i<=m)本身也是一棵树,被称作原树的子树(subtree)。

树也可以这样定义:树是由根结点和若干颗子树构成的。树是由一个集合以及在该集合上定义的一种关系构成的。集合中的元素称为树的结点,所定义的关系称为父子关系。父子关系在树的结点之间建立了一个层次结构。在这种层次结构中有一个结点具有特殊的地位,这个结点称为该树的根结点,或称为树根。

我们可以形式地给出树的递归定义如下:

单个结点是一棵树,树根就是该结点本身。
设T1,T2,..,Tk是树,它们的根结点分别为n1,n2,..,nk。用一个新结点n作为n1,n2,..,nk的父亲,则得到一棵新树,结点n就是新树的根。我们称n1,n2,..,nk为一组兄弟结点,它们都是结点n的子结点。我们还称n1,n2,..,nk为结点n的子树。
空集合也是树,称为空树。空树中没有结点。




树的四种遍历

1.先序遍历 (仅二叉树)

指先访问根,然后访问孩子的遍历方式

2.中序遍历(仅二叉树)

指先访问左(右)孩子,然后访问根,最后访问右(左)孩子的遍历方式

3.后序遍历(仅二叉树)

指先访问孩子,然后访问根的遍历方式

4.层次遍历

一层一层的访问,所以一般用广度优先遍历。

======================================================================================================

树结点 链式存储结构(tree node list)

结点:

包括一个数据元素及若干个指向其它子树的分支;例如,A,B,C,D等。

在数据结构的图形表示中,对于数据集合中的每一个数据元素用中间标有元素值的方框表示,一般称之为数据结点,简称结点。

在C语言中,链表中每一个元素称为“结点”,每个结点都应包括两个部分:一为用户需要用的实际数据;二为下一个结点的地址,即指针域和数据域。

数据结构中的每一个数据结点对应于一个储存单元,这种储存单元称为储存结点,也可简称结点

树结点(树节点):




树节点相关术语:

节点的度:一个节点含有的子树的个数称为该节点的度;
叶节点或终端节点:度为0的节点称为叶节点;
非终端节点或分支节点:度不为0的节点;
双亲节点或父节点:若一个结点含有子节点,则这个节点称为其子节点的父节点;
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
兄弟节点:具有相同父节点的节点互称为兄弟节点;
节点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;
堂兄弟节点:双亲在同一层的节点互为堂兄弟;
节点的祖先:从根到该节点所经分支上的所有节点;
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。

根据树结点的相关定义,采用“双亲孩子表示法”。其属性如下:

DWORD								m_dwLevel;				//Node levels: starting from the root to start defining the root of the first layer, the root node is a sub-layer 2, and so on;	
	T									m_data;					//the friend class can use it directly

	AL_TreeNodeList<T>*						m_pParent;				//Parent tree node
	AL_ListSingle<AL_TreeNodeList<T>*>		m_listChild;			//All Child tree node


树的几种表示法



在实际中,可使用多种形式的存储结构来表示树,既可以采用顺序存储结构,也可以采用链式存储结构,但无论采用何种存储方式,都要求存储结构不但能存储各结点本身的数据信息,还要能唯一地反映树中各结点之间的逻辑关系。

1.双亲表示法

由于树中的每个结点都有唯一的一个双亲结点,所以可用一组连续的存储空间(一维数组)存储树中的各个结点,数组中的一个元素表示树中的一个结点,每个结点含两个域,数据域存放结点本身信息,双亲域指示本结点的双亲结点在数组中位置。




2.孩子表示法

1.多重链表:每个结点有多个指针域,分别指向其子树的根

1)结点同构:结点的指针个数相等,为树的度k,这样n个结点度为k的树必有n(k-1)+1个空链域.




2)结点不同构:结点指针个数不等,为该结点的度d




2.孩子链表:每个结点的孩子结点用单链表存储,再用含n个元素的结构数组指向每个孩子链表




3.双亲孩子表示法

1.双亲表示法,PARENT(T,x)可以在常量时间内完成,但是求结点的孩子时需要遍历整个结构。

2.孩子链表表示法,适于那些涉及孩子的操作,却不适于PARENT(T,x)操作。

3.将双亲表示法和孩子链表表示法合在一起,可以发挥以上两种存储结构的优势,称为带双亲的孩子链表表示法




4.双亲孩子兄弟表示法 (二叉树专用)

又称为二叉树表示法,以二叉链表作为树的存储结构。







链式存储结构

在计算机中用一组任意的存储单元存储线性表的数据元素(这组存储单元可以是连续的,也可以是不连续的).

它不要求逻辑上相邻的元素在物理位置上也相邻.因此它没有顺序存储结构所具有的弱点,但也同时失去了顺序表可随机存取的优点.

链式存储结构特点:

1、比顺序存储结构的存储密度小 (每个节点都由数据域和指针域组成,所以相同空间内假设全存满的话顺序比链式存储更多)。

2、逻辑上相邻的节点物理上不必相邻。

3、插入、删除灵活 (不必移动节点,只要改变节点中的指针)。

4、查找结点时链式存储要比顺序存储慢。

5、每个结点是由数据域和指针域组成。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

以后的笔记潇汀会尽量详细讲解一些相关知识的,希望大家继续关注我的博客。

本节笔记到这里就结束了。

潇汀一有时间就会把自己的学习心得,觉得比较好的知识点写出来和大家一起分享。

编程开发的路很长很长,非常希望能和大家一起交流,共同学习,共同进步。

如果文章中有什么疏漏的地方,也请大家指正。也希望大家可以多留言来和我探讨编程相关的问题。

最后,谢谢你们一直的支持~~~

C++完整个代码示例(代码在VS2005下测试可运行)




AL_TreeNodeBinSearchList.h

/**
  @(#)$Id: AL_TreeNodeBinSearchList.h 89 2013-10-25 09:19:18Z xiaoting $
  @brief	Each of the data structure corresponds to a data node storage unit, this storage unit is called storage node, the node can 
  also be referred to.
	
  The related concepts of tree node 
  1.degree		degree node: A node of the subtree containing the number is called the node degree;
  2.leaf			leaf nodes or terminal nodes: degree 0 are called leaf nodes;
  3.branch		non-terminal node or branch node: node degree is not 0;
  4.parent		parent node or the parent node: If a node contains a child node, this node is called its child node's parent;
  5.child			child node or child node: A node subtree containing the root node is called the node's children;
  6.slibing		sibling nodes: nodes with the same parent node is called mutual sibling;
  7.ancestor		ancestor node: from the root to the node through all the nodes on the branch;
  8.descendant	descendant nodes: a node in the subtree rooted at any node is called the node's descendants.

  ////////////////////////////////Binary Search Tree(Binary Sort Tree)//////////////////////////////////////////
  Binary Search Tree(Binary Sort Tree), also known as a binary search tree, also known as binary search tree. It is either empty 
  tree; or a binary tree with the following properties: (1) If the left subtree is not empty, then all nodes in the left sub-tree, 
  the values ​​are less than the value of its root; (2) if the right subtree is not empty, then all nodes in the right subtree are 
  greater than the value of the value of its root; (3) left and right subtrees are also binary sort tree;

  ////////////////////////////////Binary Tree//////////////////////////////////////////
  In computer science, a binary tree is that each node has at most two sub-trees ordered tree. Usually the root of the subtree is 
  called "left subtree" (left subtree) and the "right subtree" (right subtree). Binary tree is often used as a binary search tree 
  and binary heap or a binary sort tree. Binary tree each node has at most two sub-tree (does not exist a degree greater than two 
  nodes), left and right sub-tree binary tree of the points, the order can not be reversed. Binary i-th layer of at most 2 power 
  nodes i -1; binary tree of depth k at most 2 ^ (k) -1 nodes; for any binary tree T, if it is the terminal nodes (i.e. leaf nodes) 
  is, the nodes of degree 2 is, then = + 1.

  ////////////////////////////////Chain storage structure//////////////////////////////////////////
  The computer using a set of arbitrary linear table storage unit stores data elements (which may be a continuous plurality of memory 
  cells, it can be discontinuous).

  It does not require the logic elements of adjacent physical location is adjacent to and therefore it is not sequential storage 
  structure has a weakness, but also lost the sequence table can be accessed randomly advantages.

  Chain store structural features:
  1, compared with sequential storage density storage structure (each node consists of data fields and pointers domains, so the same 
  space is full, then assume full order of more than chain stores).
  2, the logic is not required on the adjacent node is physically adjacent.
  3, insert, delete and flexible (not the mobile node, change the node as long as the pointer).
  4, find the node when stored sequentially slower than the chain stores.
  5, each node is a pointer to the data fields and domains.

  @Author $Author: xiaoting $
  @Date $Date: 2013-10-25 17:19:18 +0800 (周五, 25 十月 2013) $
  @Revision $Revision: 89 $
  @URL $URL: https://svn.code.sf.net/p/xiaoting/game/trunk/MyProject/AL_DataStructure/groupinc/AL_TreeNodeBinSearchList.h $
  @Header $Header: https://svn.code.sf.net/p/xiaoting/game/trunk/MyProject/AL_DataStructure/groupinc/AL_TreeNodeBinSearchList.h 89 2013-10-25 09:19:18Z xiaoting $
 */

#ifndef CXX_AL_TREENODEBINSEARCHLIST_H
#define CXX_AL_TREENODEBINSEARCHLIST_H

#ifndef CXX_AL_LISTSINGLE_H
#include "AL_ListSingle.h"
#endif

#ifndef CXX_AL_QUEUELIST_H
#include "AL_QueueList.h"
#endif

///////////////////////////////////////////////////////////////////////////
//			AL_TreeNodeBinSearchList
///////////////////////////////////////////////////////////////////////////

template<typename T, typename KEY> class AL_TreeBinSearchList;

template<typename T, typename KEY> 
class AL_TreeNodeBinSearchList
{
friend class AL_TreeBinSearchList<T, KEY>;

public:
	/**
	* Destruction
	*
	* @param
	* @return
	* @note
	* @attention 
	*/
	~AL_TreeNodeBinSearchList();
	
	/**
	* GetLevel
	*
	* @param
	* @return	DWORD
	* @note Node levels: starting from the root to start defining the root of the first layer, the root node is a sub-layer 2, and so on;	
	* @attention 
	*/
	DWORD GetLevel() const;

	/**
	* SetLevel
	*
	* @param	DWORD dwLevel <IN>
	* @return	
	* @note Node levels: starting from the root to start defining the root of the first layer, the root node is a sub-layer 2, and so on;	
	* @attention 
	*/
	VOID SetLevel(DWORD dwLevel);

	/**
	* GetWeight
	*
	* @param
	* @return	DWORD
	* @note If the tree node is assigned a numerical value has some meaning, then this value is called the node weights
	* @attention only be used in Huffman tree...
	*/
	DWORD GetWeight() const;

	/**
	* SetWeight
	*
	* @param	DWORD dwWeight <IN>
	* @return	
	* @note If the tree node is assigned a numerical value has some meaning, then this value is called the node weights
	* @attention only be used in Huffman tree...
	*/
	VOID SetWeight(DWORD dwWeight);

	/**
	* GetData
	*
	* @param
	* @return	T
	* @note 
	* @attention 
	*/
	T GetData() const;

	/**
	* SetData
	*
	* @param	const T& tData <IN>
	* @return	
	* @note 
	* @attention 
	*/
	VOID SetData(const T& tData);

	/**
	* GetKey
	*
	* @param
	* @return	KEY
	* @note 
	* @attention 
	*/
	KEY GetKey() const;

	/**
	* SetKey
	*
	* @param	const KEY& tKey <IN>
	* @return	
	* @note 
	* @attention 
	*/
	VOID SetKey(const KEY& tKey);

	/**
	* GetParent
	*
	* @param	
	* @return	AL_TreeNodeBinSearchList<T, KEY>*	
	* @note parent node pointer, not to manager memory
	* @attention 
	*/
	AL_TreeNodeBinSearchList<T, KEY>*	GetParent() const;

	/**
	* SetParent
	*
	* @param	DWORD dwIndex <IN>
	* @param	AL_TreeNodeBinSearchList<T, KEY>* pParent <IN>
	* @return	BOOL
	* @note parent node pointer, not to manager memory
	* @attention as the child to set the parent at the index (from the left of parent's child ) [0x00: left child, 0x01: right child]
	*/
	BOOL SetParent(DWORD dwIndex, AL_TreeNodeBinSearchList<T, KEY>* pParent);

	/**
	* SetParentLeft
	*
	* @param	AL_TreeNodeBinSearchList<T, KEY>* pParent <IN>
	* @return	BOOL
	* @note parent node pointer, not to manager memory
	* @attention as the child to set the parent at the left (from the left of parent's child )
	*/
	BOOL SetParentLeft(AL_TreeNodeBinSearchList<T, KEY>* pParent);

	/**
	* SetParentRight
	*
	* @param	AL_TreeNodeBinSearchList<T, KEY>* pParent <IN>
	* @return	BOOL
	* @note parent node pointer, not to manager memory
	* @attention as the child to set the parent at the right (from the right of parent's child )
	*/
	BOOL SetParentRight(AL_TreeNodeBinSearchList<T, KEY>* pParent);

	/**
	* Insert
	*
	* @param	DWORD dwIndex <IN>
	* @param	AL_TreeNodeBinSearchList<T, KEY>* pInsertChild <IN> 
	* @return	BOOL
	* @note inset the const AL_TreeNodeBinSearchList<T, KEY>*  into the child notes at the position [0x00: left child, 0x01: right child]
	* @attention
	*/
	BOOL Insert(DWORD dwIndex, AL_TreeNodeBinSearchList<T, KEY>* pInsertChild);

	/**
	* InsertLeft
	*
	* @param	AL_TreeNodeBinSearchList<T, KEY>* pInsertChild <IN> 
	* @return	BOOL
	* @note inset the const AL_TreeNodeBinSearchList<T, KEY>*  into the child notes at the left
	* @attention
	*/
	BOOL InsertLeft(AL_TreeNodeBinSearchList<T, KEY>* pInsertChild);

	/**
	* InsertRight
	*
	* @param	AL_TreeNodeBinSearchList<T, KEY>* pInsertChild <IN> 
	* @return	BOOL
	* @note inset the const AL_TreeNodeBinSearchList<T, KEY>*  into the child notes at the right
	* @attention
	*/
	BOOL InsertRight(AL_TreeNodeBinSearchList<T, KEY>* pInsertChild);
	
	/**
	* RemoveParent
	*
	* @param
	* @return	BOOL
	* @note remove the parent note
	* @attention
	*/
	BOOL RemoveParent();

	/**
	* Remove
	*
	* @param	AL_TreeNodeBinSearchList<T, KEY>* pRemoveChild <IN>
	* @return	BOOL
	* @note remove the notes in the child
	* @attention
	*/
	BOOL Remove(AL_TreeNodeBinSearchList<T, KEY>* pRemoveChild);

	/**
	* Remove
	*
	* @param	DWORD dwIndex <IN>
	* @return	BOOL
	* @note remove the child notes at the position [0x00: left child, 0x01: right child]
	* @attention
	*/
	BOOL Remove(DWORD dwIndex);

	/**
	* RemoveLeft
	*
	* @param
	* @return	BOOL
	* @note remove the child notes at the left
	* @attention
	*/
	BOOL RemoveLeft();

	/**
	* RemoveRight
	*
	* @param
	* @return	BOOL
	* @note remove the child notes at the right
	* @attention
	*/
	BOOL RemoveRight();

	/**
	* GetChildLeft
	*
	* @param	
	* @return	AL_TreeNodeBinSearchList<T, KEY>*
	* @note 
	* @attention
	*/
	AL_TreeNodeBinSearchList<T, KEY>* GetChildLeft() const;

	/**
	* GetChildRight
	*
	* @param	
	* @return	AL_TreeNodeBinSearchList<T, KEY>*
	* @note 
	* @attention
	*/
	AL_TreeNodeBinSearchList<T, KEY>* GetChildRight() const;
	
	/**
	* GetDegree
	*
	* @param
	* @return	DWORD
	* @note degree node: A node of the subtree containing the number is called the node degree;
	* @attention 
	*/
	DWORD GetDegree() const;

	/**
	* IsLeaf
	*
	* @param
	* @return	BOOL
	* @note leaf nodes or terminal nodes: degree 0 are called leaf nodes;
	* @attention 
	*/
	BOOL IsLeaf() const;

	/**
	* IsBranch
	*
	* @param
	* @return	BOOL
	* @note non-terminal node or branch node: node degree is not 0;
	* @attention 
	*/
	BOOL IsBranch() const;

	/**
	* IsParent
	*
	* @param	const AL_TreeNodeBinSearchList<T, KEY>* pChild <IN>
	* @return	BOOL
	* @note parent node or the parent node: If a node contains a child node, this node is called its child 
	* @attention 
	*/
	BOOL IsParent(const AL_TreeNodeBinSearchList<T, KEY>* pChild) const;

	/**
	* GetSibling
	*
	* @param	AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listSibling <OUT>
	* @return	BOOL
	* @note sibling nodes: nodes with the same parent node is called mutual sibling;
	* @attention 
	*/
	BOOL GetSibling(AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listSibling) const;

	/**
	* GetAncestor
	*
	* @param	AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listAncestor <OUT>
	* @return	BOOL
	* @note ancestor node: from the root to the node through all the nodes on the branch;
	* @attention 
	*/
	BOOL GetAncestor(AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listAncestor) const;

	/**
	* GetDescendant
	*
	* @param	AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listDescendant <OUT>
	* @return	BOOL
	* @note ancestor node: from the root to the node through all the nodes on the branch;
	* @attention 
	*/
	BOOL GetDescendant(AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listDescendant) const;

	/**
	* Clear
	*
	* @param
	* @return	VOID
	* @note
	* @attention 
	*/
	VOID Clear();

protected:
private:

	/**
	* Construction
	*
	* @param
	* @return
	* @note private the Construction, avoid the others use it
	* @attention
	*/
	AL_TreeNodeBinSearchList();
	
	/**
	* Construction
	*
	* @param	const T& tData <IN>
	* @param	const KEY& tKey <IN>
	* @return
	* @note
	* @attention private the Construction, avoid the others use it
	*/
	AL_TreeNodeBinSearchList(const T& tData, const KEY& tKey);

	/**
	*Copy Construct
	*
	* @param	const AL_TreeNodeBinSearchList<T, KEY>& cAL_TreeNodeBinSearchList
	* @return
	*/
	AL_TreeNodeBinSearchList(const AL_TreeNodeBinSearchList<T, KEY>& cAL_TreeNodeBinSearchList);

	/**
	*Assignment
	*
	* @param	const AL_TreeNodeBinSearchList<T, KEY>& cAL_TreeNodeBinSearchList
	* @return	AL_TreeNodeBinSearchList<T, KEY>&
	*/
	AL_TreeNodeBinSearchList<T, KEY>& operator = (const AL_TreeNodeBinSearchList<T, KEY>& cAL_TreeNodeBinSearchList);

public:
protected:
private:
	DWORD								m_dwLevel;				//Node levels: starting from the root to start defining the root of the first layer, the root node is a sub-layer 2, and so on;	
	DWORD								m_dwWeight;				//If the tree node is assigned a numerical value has some meaning, then this value is called the node weights
																//only be used in Huffman tree...

	T									m_tData;					//the friend class can use it directly
	KEY									m_tKey;					//the key for binary search (sort)

	AL_TreeNodeBinSearchList<T, KEY>*				m_pParent;				//Parent position
	AL_TreeNodeBinSearchList<T, KEY>*				m_pChildLeft;			//Child tree node left
	AL_TreeNodeBinSearchList<T, KEY>*				m_pChildRight;			//Child tree node right
};

///////////////////////////////////////////////////////////////////////////
//			AL_TreeNodeBinSearchList
///////////////////////////////////////////////////////////////////////////

/**
* Construction
*
* @param
* @return
* @note private the Construction, avoid the others use it
* @attention
*/
template<typename T, typename KEY> 
AL_TreeNodeBinSearchList<T, KEY>::AL_TreeNodeBinSearchList():
m_dwLevel(0x00),
m_dwWeight(0x00),
m_pParent(NULL),
m_pChildLeft(NULL),
m_pChildRight(NULL)
{

}

/**
* Construction
*
* @param	const T& tData <IN>
* @param	const KEY& tKey <IN>
* @return
* @note
* @attention private the Construction, avoid the others use it
*/
template<typename T, typename KEY> 
AL_TreeNodeBinSearchList<T, KEY>::AL_TreeNodeBinSearchList(const T& tData, const KEY& tKey):
m_dwLevel(0x00),
m_dwWeight(0x00),
m_tData(tData),
m_tKey(tKey),
m_pParent(NULL),
m_pChildLeft(NULL),
m_pChildRight(NULL)
{

}

/**
* Destruction
*
* @param
* @return
* @note
* @attention 
*/
template<typename T, typename KEY> 
AL_TreeNodeBinSearchList<T, KEY>::~AL_TreeNodeBinSearchList()
{
	//it doesn't matter to clear the pointer or not.
	Clear();
}

/**
* GetLevel
*
* @param
* @return	DWORD
* @note Node levels: starting from the root to start defining the root of the first layer, the root node is a sub-layer 2, and so on;	
* @attention 
*/
template<typename T, typename KEY> DWORD 
AL_TreeNodeBinSearchList<T, KEY>::GetLevel() const
{
	return m_dwLevel;
}

/**
* SetLevel
*
* @param	DWORD dwLevel <IN>
* @return	
* @note Node levels: starting from the root to start defining the root of the first layer, the root node is a sub-layer 2, and so on;	
* @attention 
*/
template<typename T, typename KEY> VOID 
AL_TreeNodeBinSearchList<T, KEY>::SetLevel(DWORD dwLevel)
{
	m_dwLevel = dwLevel;
}

/**
* GetWeight
*
* @param
* @return	DWORD
* @note If the tree node is assigned a numerical value has some meaning, then this value is called the node weights
* @attention only be used in Huffman tree...
*/
template<typename T, typename KEY> DWORD 
AL_TreeNodeBinSearchList<T, KEY>::GetWeight() const
{
	return m_dwWeight;
}

/**
* SetWeight
*
* @param	DWORD dwWeight <IN>
* @return	
* @note If the tree node is assigned a numerical value has some meaning, then this value is called the node weights
* @attention only be used in Huffman tree...
*/
template<typename T, typename KEY> VOID 
AL_TreeNodeBinSearchList<T, KEY>::SetWeight(DWORD dwWeight)
{
	m_dwWeight = dwWeight;
}

/**
* GetData
*
* @param
* @return	T
* @note 
* @attention 
*/
template<typename T, typename KEY> T 
AL_TreeNodeBinSearchList<T, KEY>::GetData() const
{
	return m_tData;
}

/**
* SetData
*
* @param	const T& tData <IN>
* @return	
* @note 
* @attention 
*/
template<typename T, typename KEY> VOID 
AL_TreeNodeBinSearchList<T, KEY>::SetData(const T& tData)
{
	m_tData = tData;
}

/**
* GetKey
*
* @param
* @return	KEY
* @note 
* @attention 
*/
template<typename T, typename KEY> KEY 
AL_TreeNodeBinSearchList<T, KEY>::GetKey() const
{
	return m_tKey;
}

/**
* SetData
*
* @param	const KEY& tKey <IN>
* @return	
* @note 
* @attention 
*/
template<typename T, typename KEY> VOID 
AL_TreeNodeBinSearchList<T, KEY>::SetKey(const KEY& tKey)
{
	m_tKey = tKey;
}

/**
* GetParent
*
* @param	
* @return	AL_TreeNodeBinSearchList<T, KEY>*	
* @note parent node pointer, not to manager memory
* @attention 
*/
template<typename T, typename KEY> AL_TreeNodeBinSearchList<T, KEY>* 
AL_TreeNodeBinSearchList<T, KEY>::GetParent() const
{
	return m_pParent;
}

/**
* SetParent
*
* @param	DWORD dwIndex <IN>
* @param	AL_TreeNodeBinSearchList<T, KEY>* pParent <IN>
* @return	BOOL
* @note parent node pointer, not to manager memory
* @attention as the child to set the parent at the index (from the left of parent's child ) [0x00: left child, 0x01: right child]
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::SetParent(DWORD dwIndex, AL_TreeNodeBinSearchList<T, KEY>* pParent)
{
	if (NULL == pParent) {
		return FALSE;
	}

	BOOL  bSetParent = FALSE;
	bSetParent = pParent->Insert(dwIndex, this);
	if (TRUE == bSetParent) {
		//current node insert to the parent successfully
		if (NULL != m_pParent) {
			//current node has parent
			if (FALSE == m_pParent->Remove(this)) {
				return FALSE;
			}
		}
		m_pParent = pParent;
	}
	return bSetParent;
}

/**
* SetParentLeft
*
* @param	AL_TreeNodeBinSearchList<T, KEY>* pParent <IN>
* @return	
* @note parent node pointer, not to manager memory
* @attention as the child to set the parent at the left (from the left of parent's child )
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::SetParentLeft(AL_TreeNodeBinSearchList<T, KEY>* pParent)
{
	return SetParent(0x00, pParent);
}

/**
* SetParentRight
*
* @param	AL_TreeNodeBinSearchList<T, KEY>* pParent <IN>
* @return	
* @note parent node pointer, not to manager memory
* @attention as the child to set the parent at the right (from the right of parent's child )
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::SetParentRight(AL_TreeNodeBinSearchList<T, KEY>* pParent)
{
	return SetParent(0x01, pParent);
}

/**
* Insert
*
* @param	DWORD dwIndex <IN>
* @param	AL_TreeNodeBinSearchList<T, KEY>* pInsertChild <IN> 
* @return	BOOL
* @note inset the const AL_TreeNodeBinSearchList<T, KEY>*  into the child notes at the position [0x00: left child, 0x01: right child]
* @attention
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::Insert(DWORD dwIndex, AL_TreeNodeBinSearchList<T, KEY>* pInsertChild)
{
	if (0x01 < dwIndex || NULL == pInsertChild) {
		return FALSE;
	}
	
	if (this == pInsertChild) {
		//itself
		return FALSE;
	}

	BOOL  bInsert = FALSE;
	if (0x00 == dwIndex && NULL == m_pChildLeft) {
		//left and the child left not exist
		m_pChildLeft = pInsertChild;
		bInsert = TRUE;
	}
	else if (0x01 == dwIndex && NULL == m_pChildRight) {
		//right and the child right not exist
		m_pChildRight = pInsertChild;
		bInsert = TRUE;
	}
	else {
		//no case
		bInsert = FALSE;
	}

	if (TRUE == bInsert) {
		if (GetLevel()+1 != pInsertChild->GetLevel()) {
			//deal with the child level
			INT iLevelDiff = pInsertChild->GetLevel() - GetLevel();
			pInsertChild->SetLevel(GetLevel()+1);

			AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listDescendant;
			if (TRUE == pInsertChild->GetDescendant(listDescendant)) {
				//insert child node has descendant
				AL_TreeNodeBinSearchList<T, KEY>* pDescendant = NULL;
				for (DWORD dwCnt=0x00; dwCnt<listDescendant.Length(); dwCnt++) {
					if (TRUE == listDescendant.Get(dwCnt, pDescendant)) {
						if (NULL != pDescendant) {
							//set child level
							pDescendant->SetLevel(pDescendant->GetLevel()-iLevelDiff+1);
						}
						else {
							//error
							return FALSE;
						}
					}
					else {
						//error
						return FALSE;
					}
				}
			}		
		}
		//child node insert to the current successfully
		pInsertChild->m_pParent = this;
	}
	return bInsert;
}

/**
* InsertLeft
*
* @param	AL_TreeNodeBinSearchList<T, KEY>* pInsertChild <IN> 
* @return	BOOL
* @note inset the const AL_TreeNodeBinSearchList<T, KEY>*  into the child notes at the left
* @attention
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::InsertLeft(AL_TreeNodeBinSearchList<T, KEY>* pInsertChild)
{
	return Insert(0x00, pInsertChild);
}

/**
* InsertRight
*
* @param	AL_TreeNodeBinSearchList<T, KEY>* pInsertChild <IN> 
* @return	BOOL
* @note inset the const AL_TreeNodeBinSearchList<T, KEY>*  into the child notes at the right
* @attention
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::InsertRight(AL_TreeNodeBinSearchList<T, KEY>* pInsertChild)
{
	return Insert(0x01, pInsertChild);
}

/**
* RemoveParent
*
* @param
* @return	BOOL
* @note remove the parent note
* @attention
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::RemoveParent()
{
	BOOL bRemove = FALSE;
	//don't care the parent node exist or not
	m_pParent = NULL;
	bRemove = TRUE;
	/*
	if (NULL != m_pParent) {
		m_pParent = NULL;
		bRemove = TRUE;
	}
	*/
	return bRemove;
}

/**
* Remove
*
* @param	AL_TreeNodeBinSearchList<T, KEY>* pRemoveChild <IN>
* @return	BOOL
* @note remove the notes in the child
* @attention
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::Remove(AL_TreeNodeBinSearchList<T, KEY>* pRemoveChild)
{
	BOOL bRemove = FALSE;
	if (m_pChildLeft == pRemoveChild) {
		m_pChildLeft = NULL;
		bRemove = TRUE;
	}
	else if (m_pChildRight ==  pRemoveChild) {
		m_pChildRight = NULL;
		bRemove = TRUE;
	}
	else {
		bRemove = FALSE;
	}
	return bRemove;
}

/**
* Remove
*
* @param	DWORD dwIndex <IN>
* @return	BOOL
* @note remove the child notes at the position [0x00: left child, 0x01: right child]
* @attention
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::Remove(DWORD dwIndex)
{
	AL_TreeNodeBinSearchList<T, KEY>* pRemoveChild = NULL;
	if (0x00 == dwIndex) {
		pRemoveChild = m_pChildLeft;
	}
	else if (0x01 == dwIndex) {
		pRemoveChild = m_pChildRight;
	}
	else {
		return FALSE;
	}

	return Remove(pRemoveChild);
}

/**
* RemoveLeft
*
* @param
* @return	BOOL
* @note remove the child notes at the left
* @attention
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::RemoveLeft()
{
	return Remove(m_pChildLeft);
}

/**
* RemoveRight
*
* @param
* @return	BOOL
* @note remove the child notes at the right
* @attention
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::RemoveRight()
{
	return Remove(m_pChildRight);
}

/**
* GetChildLeft
*
* @param	
* @return	AL_TreeNodeBinSearchList<T, KEY>*
* @note 
* @attention
*/
template<typename T, typename KEY> AL_TreeNodeBinSearchList<T, KEY>* 
AL_TreeNodeBinSearchList<T, KEY>::GetChildLeft() const
{
	return m_pChildLeft;
}

/**
* GetChildRight
*
* @param	
* @return	AL_TreeNodeBinSearchList<T, KEY>*
* @note 
* @attention
*/
template<typename T, typename KEY> AL_TreeNodeBinSearchList<T, KEY>* 
AL_TreeNodeBinSearchList<T, KEY>::GetChildRight() const
{
	return m_pChildRight;
}

/**
* GetDegree
*
* @param
* @return	DWORD
* @note degree node: A node of the subtree containing the number is called the node degree;
* @attention 
*/
template<typename T, typename KEY> DWORD 
AL_TreeNodeBinSearchList<T, KEY>::GetDegree() const
{
	DWORD dwDegree = 0x00;
	if (NULL != m_pChildLeft) {
		dwDegree++;
	}
	if (NULL != m_pChildRight) {
		dwDegree++;
	}

	return dwDegree;
}

/**
* IsLeaf
*
* @param
* @return	BOOL
* @note leaf nodes or terminal nodes: degree 0 are called leaf nodes;
* @attention 
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::IsLeaf() const
{
	return (0x00 == GetDegree()) ? TRUE:FALSE;
}

/**
* IsBranch
*
* @param
* @return	BOOL
* @note non-terminal node or branch node: node degree is not 0;
* @attention 
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::IsBranch() const
{
	return (0x00 != GetDegree()) ? TRUE:FALSE;
}

/**
* IsParent
*
* @param	const AL_TreeNodeBinSearchList<T, KEY>* pChild <IN>
* @return	BOOL
* @note parent node or the parent node: If a node contains a child node, this node is called its child 
* @attention 
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::IsParent(const AL_TreeNodeBinSearchList<T, KEY>* pChild) const
{
	if (NULL ==  pChild) {
		return FALSE;
	}
	// 	AL_TreeNodeBinSearchList<T, KEY>* pCompare = NULL;
	// 	for (DWORD dwCnt=0x00; dwCnt<GetDegree(); dwCnt++) {
	// 		if (TRUE == m_listChild.Get(pCompare, dwCnt)) {
	// 			if (pCompare == pChild) {
	// 				//find the child
	// 				return TRUE;
	// 			}
	// 		}
	// 	}
	// 	return FALSE;

	if (this == pChild->m_pParent) {
		return TRUE;
	}
	return FALSE;
}

/**
* GetSibling
*
* @param	AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listSibling <OUT>
* @return	BOOL
* @note sibling nodes: nodes with the same parent node is called mutual sibling;
* @attention 
*/
template<typename T, typename KEY> BOOL
AL_TreeNodeBinSearchList<T, KEY>::GetSibling(AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listSibling) const
{
	BOOL bSibling = FALSE;
	if (NULL == m_pParent) {
		//not parent node
		return bSibling;
	}

	listSibling.Clear();

	AL_TreeNodeBinSearchList<T, KEY>* pParentChild = GetChildLeft();
	if (NULL != pParentChild) {
		if (pParentChild != this) {
			//not itself
			listSibling.InsertEnd(pParentChild);
			bSibling = TRUE;
		}
	}

	pParentChild = GetChildRight();
	if (NULL != pParentChild) {
		if (pParentChild != this) {
			//not itself
			listSibling.InsertEnd(pParentChild);
			bSibling = TRUE;
		}
	}

	return bSibling;
}

/**
* GetAncestor
*
* @param	AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listAncestor <OUT>
* @return	BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention 
*/
template<typename T, typename KEY> BOOL
AL_TreeNodeBinSearchList<T, KEY>::GetAncestor(AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listAncestor) const
{
	if (NULL == m_pParent) {
		//not parent node
		return FALSE;
	}

	listAncestor.Clear();
	AL_TreeNodeBinSearchList<T, KEY>* pParent = m_pParent;
	while (NULL != pParent) {
		listAncestor.InsertEnd(pParent);
		pParent = pParent->m_pParent;
	}
	return TRUE;
}

/**
* GetDescendant
*
* @param	AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listDescendant <OUT>
* @return	BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention 
*/
template<typename T, typename KEY> BOOL 
AL_TreeNodeBinSearchList<T, KEY>::GetDescendant(AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listDescendant) const
{
	if (TRUE == IsLeaf()) {
		//child node
		return FALSE;
	}
	
	listDescendant.Clear();
	AL_TreeNodeBinSearchList<T, KEY>* pDescendant = GetChildLeft();
	if (NULL != pDescendant) {
		listDescendant.InsertEnd(pDescendant);
	}

	pDescendant = GetChildRight();
	if (NULL != pDescendant) {
		listDescendant.InsertEnd(pDescendant);
	}

	//loop the all node in listDescendant
	DWORD dwDescendantLoop = 0x00;
	AL_TreeNodeBinSearchList<T, KEY>* pDescendantLoop = NULL;
	while (TRUE == listDescendant.Get(dwDescendantLoop, pDescendant)) {
		dwDescendantLoop++;
		if (NULL != pDescendant) {
			pDescendantLoop = pDescendant->GetChildLeft();
			if (NULL != pDescendantLoop) {
				listDescendant.InsertEnd(pDescendantLoop);
			}

			pDescendantLoop = pDescendant->GetChildRight();
			if (NULL != pDescendantLoop) {
				listDescendant.InsertEnd(pDescendantLoop);
			}
		}
		else {
			//error
			return FALSE;
		}
	}
	return TRUE;
}

/**
* Clear
*
* @param
* @return	VOID
* @note
* @attention 
*/
template<typename T, typename KEY> VOID 
AL_TreeNodeBinSearchList<T, KEY>::Clear()
{
	m_dwLevel = 0x00;
	m_dwWeight = 0x00;
	m_pParent = NULL;
	m_pChildLeft = NULL;
	m_pChildRight = NULL;
}

/**
*Assignment
*
* @param	const AL_TreeNodeBinSearchList<T, KEY>& cAL_TreeNodeBinSearchList
* @return	AL_TreeNodeBinSearchList<T, KEY>&
*/
template<typename T, typename KEY> AL_TreeNodeBinSearchList<T, KEY>& 
AL_TreeNodeBinSearchList<T, KEY>::operator = (const AL_TreeNodeBinSearchList<T, KEY>& cAL_TreeNodeBinSearchList)
{
	m_dwLevel = cAL_TreeNodeBinSearchList.m_dwLevel;
	m_dwWeight = cAL_TreeNodeBinSearchList.m_dwWeight;
	m_tData = cAL_TreeNodeBinSearchList.m_tData;
	m_tKey = cAL_TreeNodeBinSearchList.m_tKey;
	m_pParent = cAL_TreeNodeBinSearchList.m_pParent;
	m_pChildLeft = cAL_TreeNodeBinSearchList.m_pChildLeft;
	m_pChildRight = cAL_TreeNodeBinSearchList.m_pChildRight;
	return *this;
}
#endif // CXX_AL_TREENODEBINSEARCHLIST_H
/* EOF */


AL_TreeBinSearchList.h

/**
@(#)$Id: AL_TreeBinSearchList.h 89 2013-10-25 09:19:18Z xiaoting $
@brief Tree (tree) that contains n (n> 0) nodes of a finite set, where:
(1) Each element is called node (node);
(2) there is a particular node is called the root node or root (root).
(3) In addition to the remaining data elements other than the root node is divided into m (m ≥ 0) disjoint set of T1, T2, ......
Tm-1, wherein each set of Ti (1 <= i <= m ) itself is a tree, the original tree is called a subtree (subtree).


Trees can also be defined as: the tree is a root node and several sub-tree consisting of stars. And a tree is a set defined on the
set consisting of a relationship. Elements in the collection known as a tree of nodes, the defined relationship is called
parent-child relationship. Parent-child relationship between the nodes of the tree establishes a hierarchy. In this there is a
hierarchy node has a special status, this node is called the root of the tree, otherwise known as root.

We can give form to the tree recursively defined as follows:
Single node is a tree, the roots is the node itself.
Let T1, T2, .., Tk is a tree, the root node are respectively n1, n2, .., nk. With a new node n as n1, n2, .., nk's father, then
get a new tree node n is the new root of the tree. We call n1, n2, .., nk is a group of siblings, they are sub-node n junction.
We also said that n1, n2, .., nk is the sub-tree node n.

Empty tree is also called the empty tree. Air no node in the tree.

The related concepts of tree
1. Degree of tree: a tree, the maximum degree of the node of the tree is called degree;
2. Height or depth of the tree: the maximum level of nodes in the tree;
3. Forests: the m (m> = 0) disjoint trees set of trees called forest;

The related concepts of tree node
1.degree degree node: A node of the subtree containing the number is called the node degree;
2.leaf leaf nodes or terminal nodes: degree 0 are called leaf nodes;
3.branch non-terminal node or branch node: node degree is not 0;
4.parent parent node or the parent node: If a node contains a child node, this node is called its child node's parent;
5.child child node or child node: A node subtree containing the root node is called the node's children;
6.slibing sibling nodes: nodes with the same parent node is called mutual sibling;
7.ancestor ancestor node: from the root to the node through all the nodes on the branch;
8.descendant descendant nodes: a node in the subtree rooted at any node is called the node's descendants.

////////////////////////////////Binary Search Tree(Binary Sort Tree)//////////////////////////////////////////
Binary Search Tree(Binary Sort Tree), also known as a binary search tree, also known as binary search tree. It is either empty
tree; or a binary tree with the following properties:
(1) If the left subtree is not empty, then all nodes in the left sub-tree, the values ​​are less than the value of its root;
(2) if the right subtree is not empty, then all nodes in the right subtree are greater than the value of the value of its root;
(3) left and right subtrees are also binary sort tree;

////////////////////////////////Binary Tree//////////////////////////////////////////
In computer science, a binary tree is that each node has at most two sub-trees ordered tree. Usually the root of the subtree is
called "left subtree" (left subtree) and the "right subtree" (right subtree). Binary tree is often used as a binary search tree
and binary heap or a binary sort tree. Binary tree each node has at most two sub-tree (does not exist a degree greater than two
nodes), left and right sub-tree binary tree of the points, the order can not be reversed. Binary i-th layer of at most 2 power
nodes i -1; binary tree of depth k at most 2 ^ (k) -1 nodes; for any binary tree T, if it is the terminal nodes (i.e. leaf nodes)
is, the nodes of degree 2 is, then = + 1.

////////////////////////////////Complete Binary Tree//////////////////////////////////////////
If set binary height of h, the h layer in addition, the other layers (1 ~ h-1) has reached the maximum number of nodes, right to
left, the h-layer node number of consecutive missing, this is a complete binary tree .

////////////////////////////////Full Binary Tree//////////////////////////////////////////
A binary tree of height h is 2 ^ h-1 element is called a full binary tree.

////////////////////////////////Chain storage structure//////////////////////////////////////////
The computer using a set of arbitrary linear table storage unit stores data elements (which may be a continuous plurality of memory
cells, it can be discontinuous).

It does not require the logic elements of adjacent physical location is adjacent to and therefore it is not sequential storage
structure has a weakness, but also lost the sequence table can be accessed randomly advantages.

Chain store structural features:
1, compared with sequential storage density storage structure (each node consists of data fields and pointers domains, so the same
space is full, then assume full order of more than chain stores).
2, the logic is not required on the adjacent node is physically adjacent.
3, insert, delete and flexible (not the mobile node, change the node as long as the pointer).
4, find the node when stored sequentially slower than the chain stores.
5, each node is a pointer to the data fields and domains.

@Author $Author: xiaoting $
@Date $Date: 2013-10-25 17:19:18 +0800 (周五, 25 十月 2013) $
@Revision $Revision: 89 $
@URL $URL: https://svn.code.sf.net/p/xiaoting/game/trunk/MyProject/AL_DataStructure/groupinc/AL_TreeBinSearchList.h $
@Header $Header: https://svn.code.sf.net/p/xiaoting/game/trunk/MyProject/AL_DataStructure/groupinc/AL_TreeBinSearchList.h 89 2013-10-25 09:19:18Z xiaoting $
*/

#ifndef CXX_AL_TREEBINSEARCHLIST_H
#define CXX_AL_TREEBINSEARCHLIST_H

#ifndef CXX_AL_LISTSINGLE_H
#include "AL_ListSingle.h"
#endif

#ifndef CXX_AL_QUEUELIST_H
#include "AL_QueueList.h"
#endif

#ifndef CXX_AL_TREENODEBINSEARCHLIST_H
#include "AL_TreeNodeBinSearchList.h"
#endif

#ifndef CXX_AL_STACKLIST_H
#include "AL_StackList.h"
#endif

///////////////////////////////////////////////////////////////////////////
// AL_TreeBinSearchList
///////////////////////////////////////////////////////////////////////////

template<typename T, typename KEY>
class AL_TreeBinSearchList
{
public:
static const DWORD TREEBINLIST_HEIGHTINVALID = 0xffffffff;

/**
* Construction
*
* @param
* @return
* @note
* @attention
*/
AL_TreeBinSearchList();

/**
* Destruction
*
* @param
* @return
* @note
* @attention
*/
~AL_TreeBinSearchList();

/**
* IsEmpty
*
* @param VOID
* @return BOOL
* @note the tree has data?
* @attention
*/
BOOL IsEmpty() const;

/**
* GetRootNode
*
* @param
* @return const AL_TreeNodeBinSearchList<T, KEY>*
* @note Get the root data
* @attention
*/
const AL_TreeNodeBinSearchList<T, KEY>* GetRootNode() const;

/**
* GetDegree
*
* @param
* @return DWORD
* @note Degree of tree: a tree, the maximum degree of the node of the tree is called degree;
* @attention
*/
DWORD GetDegree() const;

/**
* GetHeight
*
* @param
* @return DWORD
* @note Height or depth of the tree: the maximum level of nodes in the tree;
* @attention
*/
DWORD GetHeight() const;

/**
* GetNodesNum
*
* @param
* @return DWORD
* @note get the notes number of the tree
* @attention
*/
DWORD GetNodesNum() const;

/**
* Clear
*
* @param
* @return
* @note
* @attention
*/
VOID Clear();

/**
* PreOrderTraversal
*
* @param AL_ListSingle<T>& listOrder <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note Pre-order traversal
* @attention
*/
BOOL PreOrderTraversal(AL_ListSingle<T>& listOrder, AL_ListSingle<KEY>& listKey = AL_ListSingle<KEY>()) const;

/**
* InOrderTraversal
*
* @param AL_ListSingle<T>& listOrder <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note In-order traversal
* @attention
*/
BOOL InOrderTraversal(AL_ListSingle<T>& listOrder, AL_ListSingle<KEY>& listKey = AL_ListSingle<KEY>()) const;

/**
* PostOrderTraversal
*
* @param AL_ListSingle<T>& listOrder <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note Post-order traversal
* @attention
*/
BOOL PostOrderTraversal(AL_ListSingle<T>& listOrder, AL_ListSingle<KEY>& listKey = AL_ListSingle<KEY>()) const;

/**
* LevelOrderTraversal
*
* @param AL_ListSingle<T>& listOrder <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note Level-order traversal
* @attention
*/
BOOL LevelOrderTraversal(AL_ListSingle<T>& listOrder, AL_ListSingle<KEY>& listKey = AL_ListSingle<KEY>()) const;

/**
* GetSiblingAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<T>& listSibling <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note sibling nodes: nodes with the same parent node is called mutual sibling;
* @attention the current tree node must be in the tree
*/
BOOL GetSiblingAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<T>& listSibling, AL_ListSingle<KEY>& listKey = AL_ListSingle<KEY>()) const;

/**
* GetAncestorAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<T>& listAncestor <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention the current tree node must be in the tree
*/
BOOL GetAncestorAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<T>& listAncestor, AL_ListSingle<KEY>& listKey = AL_ListSingle<KEY>()) const;

/**
* GetDescendantAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<T>& listDescendant <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention the current tree node must be in the tree
*/
BOOL GetDescendantAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<T>& listDescendant, AL_ListSingle<KEY>& listKey = AL_ListSingle<KEY>()) const;

/**
* Get
*
* @param const KEY& tKey <IN>
* @param const T& tData <OUT>
* @return BOOL
* @note
* @attention
*/
BOOL Get(const KEY& tKey, T& tData);

/**
* Insert
*
* @param const T& tData <IN>
* @param const KEY& tKey <IN>
* @return BOOL
* @note
* @attention
*/
BOOL Insert(const T& tData, const KEY& tKey);

/**
* RemoveNode
*
* @param const KEY& tKey <IN>
* @return BOOL
* @note
* @attention the current tree node must be in the tree, only remove current node and not include it's descendant note
*/
BOOL RemoveNode(const KEY& tKey);

/**
* Remove
*
* @param const KEY& tKey <IN>
* @return BOOL
* @note
* @attention the current tree node must be in the tree, only remove current node and include it's descendant note
*/
BOOL Remove(const KEY& tKey);

/**
* IsCompleteTreeBin
*
* @param
* @return BOOL
* @note Is Complete Binary Tree
* @attention If set binary height of h, the h layer in addition, the other layers (1 ~ h-1) has reached the maximum number of
nodes, right to left, the h-layer node number of consecutive missing, this is a complete binary tree .
*/
BOOL IsCompleteTreeBin() const;

/**
* IsFullTreeBin
*
* @param
* @return BOOL
* @note Is Full Binary Tree
* @attention A binary tree of height h is 2 ^ h-1 element is called a full binary tree.
*/
BOOL IsFullTreeBin() const;

protected:
public:

/**
* GetChildNodeLeftAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @return const AL_TreeNodeBinSearchList<T, KEY>*
* @note get the current tree node (pCurTreeNode)'s child node at the position (left)
* @attention the current tree node must be in the tree
*/
const AL_TreeNodeBinSearchList<T, KEY>* GetChildNodeLeftAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode) const;

/**
* GetChildNodeRightAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @return const AL_TreeNodeBinSearchList<T, KEY>*
* @note get the current tree node (pCurTreeNode)'s child node at the position (right)
* @attention the current tree node must be in the tree
*/
const AL_TreeNodeBinSearchList<T, KEY>* GetChildNodeRightAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode) const;

/**
* GetNode
*
* @param const KEY& tKey <IN>
* @return const AL_TreeNodeBinSearchList<T, KEY>*
* @note
* @attention
*/
const AL_TreeNodeBinSearchList<T, KEY>* GetNode(const KEY& tKey);

/**
* GetNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param const KEY& tKey <IN>
* @return const AL_TreeNodeBinSearchList<T, KEY>*
* @note for Recursion search
* @attention
*/
const AL_TreeNodeBinSearchList<T, KEY>* GetNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, const KEY& tKey);

/**
* Insert
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pRecursionNode <IN>
* @param const T& tData <IN>
* @param const KEY& tKey <IN>
* @return BOOL
* @note for Recursion Insert
* @attention if pRecursionNode may be NULL
*/
BOOL Insert(const AL_TreeNodeBinSearchList<T, KEY>* pRecursionNode, const T& tData, const KEY& tKey);

/**
* InsertLeftAtNode
*
* @param AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param const T& tData <IN>
* @param const KEY& tKey <IN>
* @return BOOL
* @note insert the tData as child tree node to the current tree node (pCurTreeNode) at the position (left)
* @attention if NULL == pCurTreeNode, it will be insert as root tree node, the current tree node must be in the tree
*/
BOOL InsertLeftAtNode(AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, const T& tData, const KEY& tKey);

/**
* InsertRightAtNode
*
* @param AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param const T& tData <IN>
* @param const KEY& tKey <IN>
* @return BOOL
* @note insert the tData as child tree node to the current tree node (pCurTreeNode) at the position (right)
* @attention if NULL == pCurTreeNode, it will be insert as root tree node, the current tree node must be in the tree
*/
BOOL InsertRightAtNode(AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, const T& tData, const KEY& tKey);

/**
* InsertAtNode
*
* @param AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param DWORD dwIndex <IN>
* @param const T& tData <IN>
* @param const KEY& tKey <IN>
* @return BOOL
* @note insert the tData as child tree node to the current tree node (pCurTreeNode) at the position (dwIndex)
* @attention if NULL == pCurTreeNode, it will be insert as root tree node, the current tree node must be in the tree
*/
BOOL InsertAtNode(AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, DWORD dwIndex, const T& tData, const KEY& tKey);

/**
* Remove
*
* @param AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @return BOOL
* @note
* @attention the current tree node must be in the tree, only remove current node and not include it's descendant note
1). p a leaf node, just delete the node, and then modify its parent node pointer (note points is the root node and not
the root);
2). p for the single node (ie, only the left subtree or right subtree). Let p and p subtree connected to the node's father,
then delete p; (note points is the root node and not the root);
3). p left subtree and right subtree are not empty. Find p's successor y, because y certainly no left subtree, so you can
delete y, and let y father node becomes y's right subtree father node, and use the value of y instead of p values​​; or
method two is to find p precursor x, x certainly no right subtree, so you can delete x, and let x, y father node becomes
the father of the left subtree of the node;
*/
BOOL RemoveNode(AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode);

/**
* Remove
*
* @param AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @return BOOL
* @note
* @attention the current tree node must be in the tree, remove current node and include it's descendant note
*/
BOOL Remove(AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode);

/**
* PreOrderTraversal
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note Pre-order traversal
* @attention
*/
BOOL PreOrderTraversal(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const;

/**
* InOrderTraversal
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note In-order traversal
* @attention
*/
BOOL InOrderTraversal(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const;

/**
* PostOrderTraversal
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note Post-order traversal
* @attention
*/
BOOL PostOrderTraversal(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const;

/**
* LevelOrderTraversal
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note Level-order traversal
* @attention
*/
BOOL LevelOrderTraversal(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const;

/**
* PreOrderTraversalRecursion
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note Pre-order traversal
* @attention Recursion Traversal
*/
BOOL PreOrderTraversalRecursion(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const;

/**
* InOrderTraversalRecursion
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note In-order traversal
* @attention Recursion Traversal
*/
BOOL InOrderTraversalRecursion(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const;

/**
* PostOrderTraversalRecursion
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note Post-order traversal
* @attention Recursion Traversal
*/
BOOL PostOrderTraversalRecursion(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const;

/**
* GetSiblingAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listSibling <OUT>
* @return BOOL
* @note sibling nodes: nodes with the same parent node is called mutual sibling;
* @attention the current tree node must be in the tree
*/
BOOL GetSiblingAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listSibling) const;

/**
* GetAncestorAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listAncestor <OUT>
* @return BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention the current tree node must be in the tree
*/
BOOL GetAncestorAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listAncestor) const;

/**
* GetDescendantAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listDescendant <OUT>
* @return BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention the current tree node must be in the tree
*/
BOOL GetDescendantAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listDescendant) const;

/**
* RecalcDegreeHeight
*
* @param
* @return BOOL
* @note recalculate Degree Height
* @attention
*/
BOOL RecalcDegreeHeight();

/**
* GetListDataFormListNode
*
* @param
* @param const AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listNode <IN>
* @param AL_ListSingle<T>& listData <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @note
* @attention
*/
BOOL GetListDataFormListNode(const AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listNode, AL_ListSingle<T>& listData, AL_ListSingle<KEY>& listKey = AL_ListSingle<KEY>()) const;

/**
* GetPrecursor
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_TreeNodeBinSearchList<T, KEY>* pQuotePrecursor <OUT>
* @return BOOL
* @note Get Precursor of the current tree node
* @attention Recursion Search
*/
BOOL GetPrecursor(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_TreeNodeBinSearchList<T, KEY>*& pQuotePrecursor);

/**
* GetSuccessor
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_TreeNodeBinSearchList<T, KEY>*& pQuoteSuccessor <OUT>
* @return BOOL
* @note Get Successor of the current tree node
* @attention Recursion Search
*/
BOOL GetSuccessor(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_TreeNodeBinSearchList<T, KEY>*& pQuoteSuccessor);

/**
*Copy Construct
*
* @param const AL_TreeBinSearchList<T, KEY>& cAL_TreeBinSearchList
* @return
*/
AL_TreeBinSearchList(const AL_TreeBinSearchList<T, KEY>& cAL_TreeBinSearchList);

/**
*Assignment
*
* @param const AL_TreeBinSearchList<T, KEY>& cAL_TreeBinSearchList
* @return AL_TreeBinSearchList<T, KEY>&
*/
AL_TreeBinSearchList<T, KEY>& operator = (const AL_TreeBinSearchList<T, KEY>& cAL_TreeBinSearchList);

public:
protected:
private:
DWORD m_dwDegree;
DWORD m_dwHeight;
DWORD m_dwNumNodes;
AL_TreeNodeBinSearchList<T, KEY>* m_pRootNode;
};

///////////////////////////////////////////////////////////////////////////
// AL_TreeBinSearchList
///////////////////////////////////////////////////////////////////////////

/**
* Construction
*
* @param
* @return
* @note
* @attention
*/
template<typename T, typename KEY>
AL_TreeBinSearchList<T, KEY>::AL_TreeBinSearchList():
m_dwDegree(0x00),
m_dwHeight(TREEBINLIST_HEIGHTINVALID),
m_dwNumNodes(0x00),
m_pRootNode(NULL)
{

}

/**
* Destruction
*
* @param
* @return
* @note
* @attention
*/
template<typename T, typename KEY>
AL_TreeBinSearchList<T, KEY>::~AL_TreeBinSearchList()
{
Clear();
}

/**
* IsEmpty
*
* @param VOID
* @return BOOL
* @note the tree has data?
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::IsEmpty() const
{
return (0x00 == m_dwNumNodes) ? TRUE:FALSE;
}

/**
* GetRootNode
*
* @param
* @return const AL_TreeNodeBinSearchList<T, KEY>*
* @note Get the root data
* @attention
*/
template<typename T, typename KEY> const AL_TreeNodeBinSearchList<T, KEY>*
AL_TreeBinSearchList<T, KEY>::GetRootNode() const
{
return m_pRootNode;
}

/**
* GetDegree
*
* @param
* @return DWORD
* @note Degree of tree: a tree, the maximum degree of the node of the tree is called degree;
* @attention
*/
template<typename T, typename KEY> DWORD
AL_TreeBinSearchList<T, KEY>::GetDegree() const
{
return m_dwDegree;
}

/**
* GetHeight
*
* @param
* @return DWORD
* @note Height or depth of the tree: the maximum level of nodes in the tree;
* @attention
*/
template<typename T, typename KEY> DWORD
AL_TreeBinSearchList<T, KEY>::GetHeight() const
{
return m_dwHeight;
}

/**
* GetNodesNum
*
* @param
* @return DWORD
* @note get the notes number of the tree
* @attention
*/
template<typename T, typename KEY> DWORD
AL_TreeBinSearchList<T, KEY>::GetNodesNum() const
{
return m_dwNumNodes;
}

/**
* Clear
*
* @param
* @return
* @note
* @attention
*/
template<typename T, typename KEY> VOID
AL_TreeBinSearchList<T, KEY>::Clear()
{
m_dwDegree = 0x00;
m_dwHeight = TREEBINLIST_HEIGHTINVALID;
m_dwNumNodes = 0x00;

AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listDescendant;
if (NULL != m_pRootNode) {
if (TRUE == m_pRootNode->GetDescendant(listDescendant)) {
AL_TreeNodeBinSearchList<T, KEY>* pDescendant;
for (DWORD dwDelete=0x00; dwDelete<listDescendant.Length(); dwDelete++) {
if (TRUE == listDescendant.Get(dwDelete, pDescendant)) {
if (NULL != pDescendant) {
delete pDescendant;
pDescendant = NULL;
}
}
}
}
}
delete m_pRootNode;
m_pRootNode = NULL;
}

/**
* PreOrderTraversal
*
* @param AL_ListSingle<T>& listOrder <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note Pre-order traversal
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::PreOrderTraversal(AL_ListSingle<T>& listOrder, AL_ListSingle<KEY>& listKey) const
{
if (NULL == m_pRootNode) {
return FALSE;
}

AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listNode;
if (TRUE == PreOrderTraversal(m_pRootNode, listNode)) {
listOrder.Clear();
return GetListDataFormListNode(listNode, listOrder, listKey);
}

return FALSE;
}

/**
* InOrderTraversal
*
* @param AL_ListSingle<T>& listOrder <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note In-order traversal
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::InOrderTraversal(AL_ListSingle<T>& listOrder, AL_ListSingle<KEY>& listKey) const
{
if (NULL == m_pRootNode) {
return FALSE;
}

AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listNode;
if (TRUE == InOrderTraversal(m_pRootNode, listNode)) {
listOrder.Clear();
return GetListDataFormListNode(listNode, listOrder, listKey);
}

return FALSE;
}

/**
* PostOrderTraversal
*
* @param AL_ListSingle<T>& listOrder <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note Post-order traversal
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::PostOrderTraversal(AL_ListSingle<T>& listOrder, AL_ListSingle<KEY>& listKey) const
{
if (NULL == m_pRootNode) {
return FALSE;
}

AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listNode;
if (TRUE == PostOrderTraversal(m_pRootNode, listNode)) {
listOrder.Clear();
return GetListDataFormListNode(listNode, listOrder, listKey);
}

return FALSE;
}

/**
* LevelOrderTraversal
*
* @param AL_ListSingle<T>& listOrder <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note Level-order traversal
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::LevelOrderTraversal(AL_ListSingle<T>& listOrder, AL_ListSingle<KEY>& listKey) const
{
if (TRUE == IsEmpty()) {
return FALSE;
}

if (NULL == m_pRootNode) {
return FALSE;
}

AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listNode;
if (TRUE == LevelOrderTraversal(m_pRootNode, listNode)) {
listOrder.Clear();
return GetListDataFormListNode(listNode, listOrder, listKey);
}

return FALSE;
}

/**
* GetSiblingAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<T>& listSibling <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note sibling nodes: nodes with the same parent node is called mutual sibling;
* @attention the current tree node must be in the tree
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::GetSiblingAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<T>& listSibling, AL_ListSingle<KEY>& listKey) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}

AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listNode;
if (TRUE == GetSiblingAtNode(pCurTreeNode, listNode)) {
listSibling.Clear();
return GetListDataFormListNode(listNode, listSibling, listKey);
}

return FALSE;
}

/**
* GetAncestorAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<T>& listAncestor <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention the current tree node must be in the tree
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::GetAncestorAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<T>& listAncestor, AL_ListSingle<KEY>& listKey) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}

AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listNode;
if (TRUE == GetAncestorAtNode(pCurTreeNode, listNode)) {
listAncestor.Clear();
return GetListDataFormListNode(listNode, listAncestor, listKey);
}

return FALSE;
}

/**
* GetDescendantAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<T>& listDescendant <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @return BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention the current tree node must be in the tree
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::GetDescendantAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<T>& listDescendant, AL_ListSingle<KEY>& listKey) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}

AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listNode;
if (TRUE == GetDescendantAtNode(pCurTreeNode, listNode)) {
listDescendant.Clear();
return GetListDataFormListNode(listNode, listDescendant, listKey);
}

return FALSE;
}

/**
* Get
*
* @param const KEY& tKey <IN>
* @param const T& tData <OUT>
* @return BOOL
* @note
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::Get(const KEY& tKey, T& tData)
{
const AL_TreeNodeBinSearchList<T, KEY>* pGet = GetNode(tKey);
if (NULL == pGet) {
//can not get the node
return FALSE;
}

//Recursion search
tData = pGet->GetData();
return TRUE;
}

/**
* Insert
*
* @param const T& tData <IN>
* @param const KEY& tKey <IN>
* @return BOOL
* @note
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::Insert(const T& tData, const KEY& tKey)
{
//Recursion Insert
return Insert(m_pRootNode, tData, tKey);
}

/**
* Remove
*
* @param const KEY& tKey <IN>
* @return BOOL
* @note
* @attention the current tree node must be in the tree, only remove current node and include it's descendant note
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::Remove(const KEY& tKey)
{
const AL_TreeNodeBinSearchList<T, KEY>* pRemove = GetNode(tKey);
if (NULL == pRemove) {
//can not get the node
return FALSE;
}

return Remove(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pRemove));
}

/**
* RemoveNode
*
* @param const KEY& tKey <IN>
* @return BOOL
* @note
* @attention the current tree node must be in the tree, only remove current node and not include it's descendant note
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::RemoveNode(const KEY& tKey)
{
const AL_TreeNodeBinSearchList<T, KEY>* pRemoveNode = GetNode(tKey);
if (NULL == pRemoveNode) {
//can not get the node
return FALSE;
}

return RemoveNode(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pRemoveNode));
}

/**
* GetChildNodeRightAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @return const AL_TreeNodeBinSearchList<T, KEY>*
* @note get the current tree node (pCurTreeNode)'s child node at the position (right)
* @attention
*/
template<typename T, typename KEY> const AL_TreeNodeBinSearchList<T, KEY>*
AL_TreeBinSearchList<T, KEY>::GetChildNodeRightAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}
return pCurTreeNode->GetChildRight();
}

/**
* GetNode
*
* @param const KEY& tKey <IN>
* @return const AL_TreeNodeBinSearchList<T, KEY>*
* @note
* @attention
*/
template<typename T, typename KEY> const AL_TreeNodeBinSearchList<T, KEY>*
AL_TreeBinSearchList<T, KEY>::GetNode(const KEY& tKey)
{
if (TRUE == IsEmpty()) {
return NULL;
}

if (NULL == m_pRootNode) {
return NULL;
}

return GetNode(m_pRootNode, tKey);
}

/** * GetNode * * @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN> * @param const KEY& tKey <IN> * @return const AL_TreeNodeBinSearchList<T, KEY>* * @note for Recursion search * @attention */ template<typename T, typename KEY> const AL_TreeNodeBinSearchList<T, KEY>* AL_TreeBinSearchList<T, KEY>::GetNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, const KEY& tKey) { if (NULL == pCurTreeNode) { return NULL; } if (tKey < pCurTreeNode->GetKey()) { //search the left child return GetNode(pCurTreeNode->GetChildLeft(), tKey); } else if (pCurTreeNode->GetKey() < tKey) { //search the right child return GetNode(pCurTreeNode->GetChildRight(), tKey); } else { //find it, pCurTreeNode->GetKey() == tKey return pCurTreeNode; } //Recursion End return NULL; }

/**
* IsCompleteTreeBin
*
* @param
* @return BOOL
* @note Is Complete Binary Tree
* @attention If set binary height of h, the h layer in addition, the other layers (1 ~ h-1) has reached the maximum number of
nodes, right to left, the h-layer node number of consecutive missing, this is a complete binary tree .
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::IsCompleteTreeBin() const
{
if (TRUE == IsEmpty()) {
return FALSE;
}
if (NULL == m_pRootNode) {
return FALSE;
}

AL_TreeNodeBinSearchList<T, KEY>* pTreeNode;
AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listDescendant;
if (FALSE == GetDescendantAtNode(m_pRootNode, listDescendant)) {
return FALSE;
}

BOOL bMissing = FALSE;
for (DWORD dwCnt=0x00; dwCnt<listDescendant->Length(); dwCnt++) {
if (TRUE == listDescendant.Get(pTreeNode, dwCnt)) {
if (NULL != pTreeNode) {
if (m_dwHeight > pTreeNode->GetLevel()) {
//the other layers (1 ~ h-1)
if (NULL == pTreeNode->GetChildLeft() || NULL == pTreeNode->GetChildRight()) {
//left or right child not exist!
return FALSE
}
}
else {
//the h-layer
if (TRUE == bMissing) {
//node number of consecutive missing
if (NULL == pTreeNode->GetChildLeft() || NULL == pTreeNode->GetChildRight()) {
//left or right child not exist!
return FALSE
}
}

if (NULL == pTreeNode->GetChildLeft()) {
//left child not exist!
bMissing = TRUE;
if (NULL != pTreeNode->GetChildRight()) {
//right child exist!
return FALSE;
}
}
else {
//left child exist!
if (NULL == pTreeNode->GetChildRight()) {
//right child not exist!
bMissing = TRUE;
}
}
}
}
else {
return FALSE;
}
}
else {
return FALSE;
}
}

return TRUE;
}

/**
* IsFullTreeBin
*
* @param
* @return BOOL
* @note Is Full Binary Tree
* @attention A binary tree of height h is 2 ^ h-1 element is called a full binary tree.
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::IsFullTreeBin() const
{
if (TRUE == IsEmpty()) {
return FALSE;
}

DWORD dwTwo = 2;
DWORD dwFullTreeBinNum = 1;
for (DWORD dwFull=0x00; dwFull<GetHeight(); dwFull++) {
dwFullTreeBinNum *= 2;
}
dwFullTreeBinNum -= 1;

return (dwFullTreeBinNum == GetNodesNum()) ? TRUE:FALSE;
}

/**
* GetChildNodeLeftAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @return const AL_TreeNodeBinSearchList<T, KEY>*
* @note get the current tree node (pCurTreeNode)'s child node at the position (left)
* @attention the current tree node must be in the tree
*/
template<typename T, typename KEY> const AL_TreeNodeBinSearchList<T, KEY>*
AL_TreeBinSearchList<T, KEY>::GetChildNodeLeftAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}
return pCurTreeNode->GetChildLeft();
}

/** * Insert * * @param const AL_TreeNodeBinSearchList<T, KEY>* pRecursionNode <IN> * @param const T& tData <IN> * @param const KEY& tKey <IN> * @return BOOL * @note for Recursion Insert * @attention if pRecursionNode may be NULL */ template<typename T, typename KEY> BOOL AL_TreeBinSearchList<T, KEY>::Insert(const AL_TreeNodeBinSearchList<T, KEY>* pRecursionNode, const T& tData, const KEY& tKey) { if (TRUE == IsEmpty()) { if (NULL != pRecursionNode) { //empty, but has the node return FALSE; } //has no root node, insert as root node return InsertAtNode(NULL, 0x00, tData, tKey); } static const AL_TreeNodeBinSearchList<T, KEY>* pRecursionNodePre = NULL; //store the previous node of recursion if (NULL == pRecursionNode) { if (NULL == pRecursionNodePre) { //some thing wrong return FALSE; } //inset to the current tree node if (NULL == pRecursionNodePre->GetChildLeft() && NULL == pRecursionNodePre->GetChildRight()) { //left and right all NULL if (tKey < pRecursionNodePre->GetKey()) { //insert the left child return InsertLeftAtNode(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pRecursionNodePre), tData, tKey); } else if (pRecursionNodePre->GetKey() < tKey) { //insert the right child return InsertRightAtNode(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pRecursionNodePre), tData, tKey); } else { //error, can not have the same key return FALSE; } } else if (NULL == pRecursionNodePre->GetChildLeft() && NULL != pRecursionNodePre->GetChildRight()) { //left NULL, right not NULL if (tKey < pRecursionNodePre->GetKey()) { //insert the left child return InsertLeftAtNode(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pRecursionNodePre), tData, tKey); } else { //error, can not have the same key return FALSE; } } else if (NULL != pRecursionNodePre->GetChildLeft() && NULL == pRecursionNodePre->GetChildRight()) { //left not NULL, right NULL if (pRecursionNodePre->GetKey() < tKey) { return InsertRightAtNode(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pRecursionNodePre), tData, tKey); } else { return FALSE; } } else { //left not NULL, right not NULL return FALSE; } } pRecursionNodePre = pRecursionNode; if (tKey < pRecursionNode->GetKey()) { //recursion the left child (Insert) return Insert(pRecursionNode->GetChildLeft(), tData, tKey); } else if (pRecursionNode->GetKey() < tKey) { //recursion the right child (Insert) return Insert(pRecursionNode->GetChildRight(), tData, tKey); } else { //error, can not have the same key return FALSE; } //Recursion End return FALSE; }
/**
* InsertLeftAtNode
*
* @param AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param const T& tData <IN>
* @param const KEY& tKey <IN>
* @return BOOL
* @note insert the tData as child tree node to the current tree node (pCurTreeNode) at the position (left)
* @attention if NULL == pCurTreeNode, it will be insert as root tree node, the current tree node must be in the tree
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::InsertLeftAtNode(AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, const T& tData, const KEY& tKey)
{
return InsertAtNode(pCurTreeNode, 0x00, tData, tKey);
}

/**
* InsertRightAtNode
*
* @param AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param const T& tData <IN>
* @param const KEY& tKey <IN>
* @return BOOL
* @note insert the tData as child tree node to the current tree node (pCurTreeNode) at the position (right)
* @attention if NULL == pCurTreeNode, it will be insert as root tree node, the current tree node must be in the tree
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::InsertRightAtNode(AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, const T& tData, const KEY& tKey)
{
return InsertAtNode(pCurTreeNode, 0x01, tData, tKey);
}

/**
* InsertAtNode
*
* @param AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param DWORD dwIndex <IN>
* @param const T& tData <IN>
* @return BOOL
* @note insert the tData as child tree node to the current tree node (pCurTreeNode) at the position (dwIndex)
* @attention if NULL == pCurTreeNode, it will be insert as root tree node, the current tree node must be in the tree
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::InsertAtNode(AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, DWORD dwIndex, const T& tData, const KEY& tKey)
{
AL_TreeNodeBinSearchList<T, KEY>* pTreeNode = NULL;
if (TRUE == IsEmpty()) {
if (NULL != pCurTreeNode) {
//error can not insert to the current node pCurTreeNode, is not exist in the tree
return FALSE;
}
else {
pTreeNode = new AL_TreeNodeBinSearchList<T, KEY>;
if (NULL == pTreeNode) {
return FALSE;
}
pTreeNode->SetData(tData);
pTreeNode->SetKey(tKey);
pTreeNode->SetLevel(0x00);

m_pRootNode = pTreeNode;
m_dwDegree = 0x00;
m_dwHeight = 0x00; //empty tree 0xffffffff (-1)
m_dwNumNodes++;
return TRUE;
}
}

if (NULL == pCurTreeNode) {
return FALSE;
}

//inset to the current tree node
pTreeNode = new AL_TreeNodeBinSearchList<T, KEY>;
if (NULL == pTreeNode) {
return FALSE;
}
pTreeNode->SetData(tData);
pTreeNode->SetKey(tKey);
pTreeNode->SetLevel(pCurTreeNode->GetLevel() + 1);

if (FALSE == pCurTreeNode->Insert(dwIndex, pTreeNode)) {
delete pTreeNode;
pTreeNode = NULL;
return FALSE;
}

DWORD dwCurNodeDegree = 0x00;
//loop all node to get the current node degree
if (m_dwDegree < pCurTreeNode->GetDegree()) {
m_dwDegree = pCurTreeNode->GetDegree();
}

if (m_dwHeight < pTreeNode->GetLevel()) {
m_dwHeight =pTreeNode->GetLevel();
}
m_dwNumNodes++;

return TRUE;
}

/**
* Remove
*
* @param AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @return BOOL
* @note
* @attention the current tree node must be in the tree, only remove current node and not include it's descendant note
1). p a leaf node, just delete the node, and then modify its parent node pointer (note points is the root node and not
the root);
2). p for the single node (ie, only the left subtree or right subtree). Let p and p subtree connected to the node's father,
then delete p; (note points is the root node and not the root);
3). p left subtree and right subtree are not empty. Find p's successor y, because y certainly no left subtree, so you can
delete y, and let y father node becomes y's right subtree father node, and use the value of y instead of p values​​; or
method two is to find p precursor x, x certainly no right subtree, so you can delete x, and let x, y father node becomes
the father of the left subtree of the node;
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::RemoveNode(AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode)
{
if (NULL == pCurTreeNode) {
return FALSE;
}

AL_TreeNodeBinSearchList<T, KEY>* pCurNodeParent = NULL;
if (TRUE == pCurTreeNode->IsLeaf()) {
// if (0x00 == pCurTreeNode->GetDegree()) {
//leaf node; see 1)
pCurNodeParent = pCurTreeNode->GetParent();
if (NULL != pCurNodeParent) {
if (FALSE == pCurNodeParent->Remove(pCurTreeNode)) {
return FALSE;
}
}
else {
//root node
if (m_pRootNode == pCurTreeNode) {
//judge root node
m_pRootNode = NULL;
}
else {
return FALSE;
}
}
}
else if (0x01 == pCurTreeNode->GetDegree()) {
//not leaf node, single node; see 2)
//get the child node
AL_TreeNodeBinSearchList<T, KEY>* pChildeNode = NULL;
if (NULL != pCurTreeNode->GetChildLeft()) {
//left child exist
pChildeNode = pCurTreeNode->GetChildLeft();
}
if (NULL != pCurTreeNode->GetChildRight()) {
//right child exist
pChildeNode = pCurTreeNode->GetChildRight();
}

if (NULL == pChildeNode) {
//can not get child node
return FALSE;
}
pChildeNode->RemoveParent();

pCurNodeParent = pCurTreeNode->GetParent();
if (NULL != pCurNodeParent) {
if (pCurTreeNode == pCurNodeParent->GetChildLeft()) {
//current node as child left exist
pCurNodeParent->Remove(pCurTreeNode);
if (FALSE == pCurNodeParent->InsertLeft(pChildeNode)) {
return FALSE;
}
}
else {
//current node as child right exist
pCurNodeParent->Remove(pCurTreeNode);
if (FALSE == pCurNodeParent->InsertRight(pChildeNode)) {
return FALSE;
}
}
}
else {
//root node
if (m_pRootNode == pCurTreeNode) {
//judge root node
m_pRootNode = pChildeNode;
}
else {
return FALSE;
}
}
}
else if (0x02 == pCurTreeNode->GetDegree()){
// left and right are not empty; see 3)
AL_TreeNodeBinSearchList<T, KEY>* pChildLeft = pCurTreeNode->GetChildLeft();
AL_TreeNodeBinSearchList<T, KEY>* pChildRight = pCurTreeNode->GetChildRight();
if (NULL == pChildLeft|| NULL == pChildRight) {
//the left or right child not exist
return FALSE;
}
AL_TreeNodeBinSearchList<T, KEY>* pReplace = NULL;
if (FALSE == GetSuccessor(pChildLeft, pReplace)) {
//get the successor failed
return FALSE;
}
if (NULL == pReplace) {
//get the successor failed
return FALSE;
}

//pReplace must have not the right child
if (NULL != pReplace->GetChildRight()) {
//judge it
return FALSE;
}

AL_TreeNodeBinSearchList<T, KEY>* pReplaceParent = pReplace->GetParent();
if (NULL == pReplaceParent) {
return FALSE;
}
AL_TreeNodeBinSearchList<T, KEY>* pReplaceChildLeft = pReplace->GetChildLeft();
if (FALSE == pReplaceParent->Remove(pReplace)
|| FALSE == pReplace->RemoveParent()
|| FALSE == pReplace->Remove(pReplaceChildLeft)) {
return FALSE;
}

if (NULL != pReplaceChildLeft) {
//left child exist
pReplaceChildLeft->RemoveParent();
if (FALSE == pReplaceParent->InsertRight(pReplaceChildLeft)) {
return FALSE;
}
}

//insert current node's child to the replace node pChildLeft->RemoveParent(); pChildRight->RemoveParent(); if (pReplace != pChildLeft) { if (FALSE == pReplace->InsertLeft(pChildLeft)) { return FALSE; } } if (pReplace != pChildRight) { if (FALSE == pReplace->InsertRight(pChildRight)) { return FALSE; } }

pCurNodeParent = pCurTreeNode->GetParent();
if (NULL != pCurNodeParent) {
//current node has parent
if (pCurTreeNode == pCurNodeParent->GetChildLeft()) {
//current node as child left exist
pCurNodeParent->Remove(pCurTreeNode);
if (FALSE == pCurNodeParent->InsertLeft(pReplace)) {
return FALSE;
}
}
else {
//current node as child right exist
pCurNodeParent->Remove(pCurTreeNode);
if (FALSE == pCurNodeParent->InsertRight(pReplace)) {
return FALSE;
}
}
}
else {
if (m_pRootNode == pCurTreeNode) {
//root node
m_pRootNode = pReplace;
}
else {
return FALSE;
}
}
}
else {
//Binary Search Tree only two child node, can not be this case
return FALSE;
}

//delete the current node
pCurTreeNode->Clear();
delete pCurTreeNode;
pCurTreeNode = NULL;

m_dwNumNodes--;
return TRUE;
}

/**
* Remove
*
* @param AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @return BOOL
* @note
* @attention the current tree node must be in the tree, remove current node and include it's descendant note
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::Remove(AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode)
{
if (NULL == pCurTreeNode) {
return FALSE;
}

AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listTreeNodeDescendant;
AL_TreeNodeBinSearchList<T, KEY>* pTreeNodeDescendant = NULL;
if (TRUE == pCurTreeNode->GetDescendant(listTreeNodeDescendant)) {
//delete the descendant node
for (DWORD dwRemoveCnt=0x00; dwRemoveCnt<listTreeNodeDescendant.Length(); dwRemoveCnt++) {
if (TRUE == listTreeNodeDescendant.Get(dwRemoveCnt, pTreeNodeDescendant)) {
if (NULL != pTreeNodeDescendant) {
pTreeNodeDescendant->Clear();
delete pTreeNodeDescendant;
pTreeNodeDescendant = NULL;
}
else {
return FALSE;
}
}
else {
return FALSE;
}
}
}

AL_TreeNodeBinSearchList<T, KEY>* pNodeParent = pCurTreeNode->GetParent();
if (NULL == pNodeParent && m_pRootNode != pCurTreeNode) {
//not root node and has no parent node
return FALSE;
}
if (NULL != pNodeParent) {
//parent exist, remove the child node (pCurTreeNode)
pNodeParent->Remove(pCurTreeNode);
}

if (m_pRootNode == pCurTreeNode) {
//remove the root node
m_pRootNode = NULL;
}

pCurTreeNode->Clear();
delete pCurTreeNode;
pCurTreeNode = NULL;

m_dwNumNodes -= (listTreeNodeDescendant.Length() + 1);

if (FALSE == RecalcDegreeHeight()) {
return FALSE;
}
return TRUE;
}

/**
* PreOrderTraversal
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note Pre-order traversal
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::PreOrderTraversal(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}

listOrder.Clear();

//Recursion Traversal
return PreOrderTraversalRecursion(pCurTreeNode, listOrder);

//Not Recursion Traversal
AL_StackList<AL_TreeNodeBinSearchList<T, KEY>*> cStack;
AL_TreeNodeBinSearchList<T, KEY>* pTreeNode = const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pCurTreeNode);

while (TRUE != cStack.IsEmpty() || NULL != pTreeNode) {
while (NULL != pTreeNode) {
listOrder.InsertEnd(pTreeNode);
if (NULL != pTreeNode->GetChildRight()) {
//push the child right to stack
cStack.Push(pTreeNode->GetChildRight());
}
pTreeNode = pTreeNode->GetChildLeft();
}

if (TRUE == cStack.Pop(pTreeNode)) {
if (NULL == pTreeNode) {
return FALSE;
}
}
else {
return FALSE;
}

}
return TRUE;
}

/**
* InOrderTraversal
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note In-order traversal
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::InOrderTraversal(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}

listOrder.Clear();

//Recursion Traversal
return InOrderTraversalRecursion(pCurTreeNode, listOrder);

//Not Recursion Traversal
AL_StackList<AL_TreeNodeBinSearchList<T, KEY>*> cStack;
AL_TreeNodeBinSearchList<T, KEY>* pTreeNode = const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pCurTreeNode);

while (TRUE != cStack.IsEmpty() || NULL != pTreeNode) {
while (NULL != pTreeNode) {
cStack.Push(pTreeNode);
pTreeNode = pTreeNode->GetChildLeft();
}

if (TRUE == cStack.Pop(pTreeNode)) {
if (NULL != pTreeNode) {
listOrder.InsertEnd(pTreeNode);
if (NULL != pTreeNode->GetChildRight()){
//child right exist, push the node, and loop it's left child to push
pTreeNode = pTreeNode->GetChildRight();
}
else {
//to pop the node in the stack
pTreeNode = NULL;
}
}
else {
return FALSE;
}
}
else {
return FALSE;
}
}

return TRUE;
}

/**
* PostOrderTraversal
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note Post-order traversal
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::PostOrderTraversal(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}

listOrder.Clear();

//Recursion Traversal
return PostOrderTraversalRecursion(pCurTreeNode, listOrder);

//Not Recursion Traversal
AL_StackList<AL_TreeNodeBinSearchList<T, KEY>*> cStack;
AL_TreeNodeBinSearchList<T, KEY>* pTreeNode = const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pCurTreeNode);
AL_StackList<AL_TreeNodeBinSearchList<T, KEY>*> cStackReturn;
AL_TreeNodeBinSearchList<T, KEY>* pTreeNodeReturn = NULL;

while (TRUE != cStack.IsEmpty() || NULL != pTreeNode) {
while (NULL != pTreeNode) {
cStack.Push(pTreeNode);
if (NULL != pTreeNode->GetChildLeft()) {
pTreeNode = pTreeNode->GetChildLeft();
}
else {
//has not left child, get the right child
pTreeNode = pTreeNode->GetChildRight();
}
}

if (TRUE == cStack.Pop(pTreeNode)) {
if (NULL != pTreeNode) {
listOrder.InsertEnd(pTreeNode);
if (NULL != pTreeNode->GetChildLeft() && NULL != pTreeNode->GetChildRight()){
//child right exist
cStackReturn.Top(pTreeNodeReturn);
if (pTreeNodeReturn != pTreeNode) {
listOrder.RemoveAt(listOrder.Length()-1);
cStack.Push(pTreeNode);
cStackReturn.Push(pTreeNode);
pTreeNode = pTreeNode->GetChildRight();
}
else {
//to pop the node in the stack
cStackReturn.Pop(pTreeNodeReturn);
pTreeNode = NULL;
}
}
else {
//to pop the node in the stack
pTreeNode = NULL;
}
}
else {
return FALSE;
}
}
else {
return FALSE;
}
}

return TRUE;
}

/**
* LevelOrderTraversal
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note Level-order traversal
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::LevelOrderTraversal(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}
listOrder.Clear();
/*
AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listNodeOrder;
listNodeOrder.InsertEnd(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pCurTreeNode));
//loop the all node
DWORD dwNodeOrderLoop = 0x00;
AL_TreeNodeBinSearchList<T, KEY>* pNodeOrderLoop = NULL;
AL_TreeNodeBinSearchList<T, KEY>* pNodeOrderChild = NULL;
while (TRUE == listNodeOrder.Get(pNodeOrderLoop, dwNodeOrderLoop)) {
dwNodeOrderLoop++;
if (NULL != pNodeOrderLoop) {
listOrder.InsertEnd(pNodeOrderLoop);
pNodeOrderChild = pNodeOrderLoop->GetChildLeft();
if (NULL != pNodeOrderChild) {
queueOrder.Push(pNodeOrderChild);
}
pNodeOrderChild = pNodeOrderLoop->GetChildRight();
if (NULL != pNodeOrderChild) {
queueOrder.Push(pNodeOrderChild);
}
}
else {
//error
return FALSE;
}
}
return TRUE;
*/

AL_QueueList<AL_TreeNodeBinSearchList<T, KEY>*> queueOrder;
queueOrder.Push(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pCurTreeNode));

AL_TreeNodeBinSearchList<T, KEY>* pNodeOrderLoop = NULL;
AL_TreeNodeBinSearchList<T, KEY>* pNodeOrderChild = NULL;
while (FALSE == queueOrder.IsEmpty()) {
if (TRUE == queueOrder.Pop(pNodeOrderLoop)) {
if (NULL != pNodeOrderLoop) {
listOrder.InsertEnd(pNodeOrderLoop);
pNodeOrderChild = pNodeOrderLoop->GetChildLeft();
if (NULL != pNodeOrderChild) {
queueOrder.Push(pNodeOrderChild);
}
pNodeOrderChild = pNodeOrderLoop->GetChildRight();
if (NULL != pNodeOrderChild) {
queueOrder.Push(pNodeOrderChild);
}
}
else {
return FALSE;
}
}
else {
return FALSE;
}
}
return TRUE;
}

/**
* PreOrderTraversalRecursion
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note Pre-order traversal
* @attention Recursion Traversal
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::PreOrderTraversalRecursion(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}

//Do Something with node
if (FALSE == listOrder.InsertEnd(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pCurTreeNode))) {
return FALSE;
}

if(NULL != pCurTreeNode->GetChildLeft()) {
if (FALSE == PreOrderTraversalRecursion(pCurTreeNode->GetChildLeft(), listOrder)) {
return FALSE;
}
}

if(NULL != pCurTreeNode->GetChildRight()) {
if (FALSE == PreOrderTraversalRecursion(pCurTreeNode->GetChildRight(), listOrder)) {
return FALSE;
}
}

//Recursion End
return TRUE;
}

/**
* InOrderTraversalRecursion
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note In-order traversal
* @attention Recursion Traversal
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::InOrderTraversalRecursion(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}

if(NULL != pCurTreeNode->GetChildLeft()) {
if (FALSE == InOrderTraversalRecursion(pCurTreeNode->GetChildLeft(), listOrder)) {
return FALSE;
}
}

//Do Something with node
if (FALSE == listOrder.InsertEnd(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pCurTreeNode))) {
return FALSE;
}

if(NULL != pCurTreeNode->GetChildRight()) {
if (FALSE == InOrderTraversalRecursion(pCurTreeNode->GetChildRight(), listOrder)) {
return FALSE;
}
}

//Recursion End
return TRUE;
}

/**
* PostOrderTraversalRecursion
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder <OUT>
* @return BOOL
* @note Post-order traversal
* @attention Recursion Traversal
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::PostOrderTraversalRecursion(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listOrder) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}

if(NULL != pCurTreeNode->GetChildLeft()) {
if (FALSE == PostOrderTraversalRecursion(pCurTreeNode->GetChildLeft(), listOrder)) {
return FALSE;
}
}

if(NULL != pCurTreeNode->GetChildRight()) {
if (FALSE == PostOrderTraversalRecursion(pCurTreeNode->GetChildRight(), listOrder)) {
return FALSE;
}
}

//Do Something with node
if (FALSE == listOrder.InsertEnd(const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pCurTreeNode))) {
return FALSE;
}

//Recursion End
return TRUE;
}

/**
* GetSiblingAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listSibling <OUT>
* @return BOOL
* @note sibling nodes: nodes with the same parent node is called mutual sibling;
* @attention the current tree node must be in the tree
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::GetSiblingAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listSibling) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}

listSibling.Clear();
return pCurTreeNode->GetSibling(listSibling);
}

/**
* GetAncestorAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listAncestor <OUT>
* @return BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention the current tree node must be in the tree
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::GetAncestorAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listAncestor) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}

listAncestor.Clear();
return pCurTreeNode->GetAncestor(listAncestor);
}

/**
* GetDescendantAtNode
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listDescendant <OUT>
* @return BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention the current tree node must be in the tree
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::GetDescendantAtNode(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listDescendant) const
{
if (NULL == pCurTreeNode) {
return FALSE;
}

listDescendant.Clear();
return pCurTreeNode->GetDescendant(listDescendant);
}

/**
* RecalcDegreeHeight
*
* @param
* @return BOOL
* @note recalculate Degree Height
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::RecalcDegreeHeight()
{
if (NULL == m_pRootNode) {
if (TRUE == IsEmpty()) {
m_dwDegree = 0x00;
m_dwHeight = TREEBINLIST_HEIGHTINVALID;
return TRUE;
}
else {
return FALSE;
}
}
m_dwDegree = m_pRootNode->GetDegree();
m_dwHeight = m_pRootNode->GetLevel();

//loop all the node
AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*> listTreeNodeDescendant;
if (TRUE == m_pRootNode->GetDescendant(listTreeNodeDescendant)) {
DWORD dwNumNodes = listTreeNodeDescendant.Length() + 1;
if (m_dwNumNodes != dwNumNodes) {
return FALSE;
}

AL_TreeNodeBinSearchList<T, KEY>* pTreeNodeDescendant = NULL;
for (DWORD dwLoopCnt=0x00; dwLoopCnt<listTreeNodeDescendant.Length(); dwLoopCnt++) {
if (TRUE == listTreeNodeDescendant.Get(dwLoopCnt, pTreeNodeDescendant)) {
if (NULL != pTreeNodeDescendant) {
if (m_dwDegree < pTreeNodeDescendant->GetDegree()) {
m_dwDegree = pTreeNodeDescendant->GetDegree();
}
if (m_dwHeight < pTreeNodeDescendant->GetLevel()) {
m_dwHeight = pTreeNodeDescendant->GetLevel();
}
}
else {
//error
return FALSE;
}
}
else {
//error
return FALSE;
}
}
}
return TRUE;
}

/**
* GetListDataFormListNode
*
* @param
* @param const AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listNode <IN>
* @param AL_ListSingle<T>& listData <OUT>
* @param AL_ListSingle<KEY>& listKey <OUT> (default value: AL_ListSingle<KEY>())
* @note
* @attention
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::GetListDataFormListNode(const AL_ListSingle<AL_TreeNodeBinSearchList<T, KEY>*>& listNode, AL_ListSingle<T>& listData, AL_ListSingle<KEY>& listKey) const
{
AL_TreeNodeBinSearchList<T, KEY>* pNodeLoop = NULL;
listData.Clear();
listKey.Clear();
//loop all node in list
for (DWORD dwLoopCnt=0x00; dwLoopCnt<listNode.Length(); dwLoopCnt++) {
if (TRUE == listNode.Get(dwLoopCnt, pNodeLoop)) {
if (NULL != pNodeLoop) {
if (FALSE == listData.InsertEnd(pNodeLoop->GetData())
|| FALSE == listKey.InsertEnd(pNodeLoop->GetKey())) {
return FALSE;
}
}
else {
return FALSE;
}
}
else {
return FALSE;
}
}
return TRUE;
}

/**
* GetPrecursor
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_TreeNodeBinSearchList<T, KEY>*& pQuotePrecursor <OUT>
* @return BOOL
* @note Get Precursor of the current tree node
* @attention Recursion Search
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::GetPrecursor(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_TreeNodeBinSearchList<T, KEY>*& pQuotePrecursor)
{
if (NULL == pCurTreeNode) {
return FALSE;
}

if (NULL != pCurTreeNode->GetChildLeft()) {
if (FALSE == GetSuccessor(pCurTreeNode->GetChildLeft(), pQuotePrecursor)) {
return FALSE;
}
}
else {
pQuotePrecursor = const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pCurTreeNode);
}
return TRUE;
}

/**
* GetSuccessor
*
* @param const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode <IN>
* @param AL_TreeNodeBinSearchList<T, KEY>*& pQuoteSuccessor <OUT>
* @return BOOL
* @note Get Successor of the current tree node
* @attention Recursion Search
*/
template<typename T, typename KEY> BOOL
AL_TreeBinSearchList<T, KEY>::GetSuccessor(const AL_TreeNodeBinSearchList<T, KEY>* pCurTreeNode, AL_TreeNodeBinSearchList<T, KEY>*& pQuoteSuccessor)
{
if (NULL == pCurTreeNode) {
return FALSE;
}

if (NULL != pCurTreeNode->GetChildRight()) {
if (FALSE == GetSuccessor(pCurTreeNode->GetChildRight(), pQuoteSuccessor)) {
return FALSE;
}
}
else {
pQuoteSuccessor = const_cast<AL_TreeNodeBinSearchList<T, KEY>*>(pCurTreeNode);
}
return TRUE;
}

#endif // CXX_AL_TREEBINSEARCHLIST_H
/* EOF */


测试代码

#ifdef TEST_AL_TREEBINSEARCHLIST
//	AL_TreeBinSearchList<DWORD, DWORD> cTreeSearchBin;
	AL_TreeBinSearchList<DWORD, DWORD>* pTreeSearchBin =  new AL_TreeBinSearchList<DWORD, DWORD>;
	AL_TreeBinSearchList<DWORD, DWORD>& cTreeSearchBin = *pTreeSearchBin;
	BOOL bEmpty = cTreeSearchBin.IsEmpty();
	std::cout<<bEmpty<<std::endl;
	const AL_TreeNodeBinSearchList<DWORD, DWORD>* pConstRootNode = cTreeSearchBin.GetRootNode();
	AL_TreeNodeBinSearchList<DWORD, DWORD>* pRootNode = const_cast<AL_TreeNodeBinSearchList<DWORD, DWORD>*>(pConstRootNode);
	std::cout<<pRootNode<<std::endl;
	DWORD dwDegree = cTreeSearchBin.GetDegree();
	std::cout<<dwDegree<<std::endl;
	DWORD dwHeight = cTreeSearchBin.GetHeight();
	std::cout<<dwHeight<<std::endl;
	DWORD dwNodesNum = cTreeSearchBin.GetNodesNum();
	std::cout<<dwNodesNum<<std::endl;

	//insert data
	struct TestData 
	{
		DWORD dwData;
		DWORD dwKey;
	};
	DWORD dwData = 0x00;
	DWORD dwKey = 0x00;
	TestData sTestData[] = {{0, 65}, {1, 9}, {2, 61}, {3, 66}, {4, 32}, {5, 1}, {6, 39}, {7, 14}, {8, 99}, {9, 68}, 
	{10, 11}, {11, 6}, {12, 94}, {13, 53}, {14, 17}, {15, 67}, {16, 23}, {17, 86}, {18, 7}, {19, 2}};
	BOOL bInsert = FALSE;
	for (DWORD dwTestDataCnt=0x00; dwTestDataCnt<(sizeof(sTestData)/sizeof(TestData));dwTestDataCnt++) {
		bInsert = cTreeSearchBin.Insert(sTestData[dwTestDataCnt].dwData, sTestData[dwTestDataCnt].dwKey);
		if (FALSE == bInsert) {
			std::cout<<bInsert<<std::endl;
		}
	}

	BOOL bGet = cTreeSearchBin.Get(23, dwData);
	std::cout<<bGet<<", "<<dwData<<std::endl;

	pConstRootNode = cTreeSearchBin.GetRootNode();
	pRootNode = const_cast<AL_TreeNodeBinSearchList<DWORD, DWORD>*>(pConstRootNode);
	std::cout<<pRootNode<<std::endl;

	const AL_TreeNodeBinSearchList<DWORD, DWORD>* pConstTreeNode = cTreeSearchBin.GetChildNodeLeftAtNode(pRootNode);
	AL_TreeNodeBinSearchList<DWORD, DWORD>* pTreeNode = const_cast<AL_TreeNodeBinSearchList<DWORD, DWORD>*>(pConstTreeNode);
	std::cout<<pTreeNode<<std::endl;

	const AL_TreeNodeBinSearchList<DWORD, DWORD>* pConstTreeNode20 = cTreeSearchBin.GetChildNodeLeftAtNode(pTreeNode);
	AL_TreeNodeBinSearchList<DWORD, DWORD>* pTreeNode20 = const_cast<AL_TreeNodeBinSearchList<DWORD, DWORD>*>(pConstTreeNode20);
	std::cout<<pTreeNode<<std::endl;

	const AL_TreeNodeBinSearchList<DWORD, DWORD>* pConstTreeNode31 = cTreeSearchBin.GetChildNodeRightAtNode(pConstTreeNode20);
	AL_TreeNodeBinSearchList<DWORD, DWORD>* pTreeNode31 = const_cast<AL_TreeNodeBinSearchList<DWORD, DWORD>*>(pConstTreeNode31);

	const AL_TreeNodeBinSearchList<DWORD, DWORD>* pConstTreeNode30 = cTreeSearchBin.GetChildNodeLeftAtNode(pConstTreeNode20);
	AL_TreeNodeBinSearchList<DWORD, DWORD>* pTreeNode30 = const_cast<AL_TreeNodeBinSearchList<DWORD, DWORD>*>(pConstTreeNode30);

	const AL_TreeNodeBinSearchList<DWORD, DWORD>* pConstTreeNode999 = cTreeSearchBin.GetChildNodeRightAtNode(pConstTreeNode30);
	AL_TreeNodeBinSearchList<DWORD, DWORD>* pTreeNode999 = const_cast<AL_TreeNodeBinSearchList<DWORD, DWORD>*>(pConstTreeNode999);

	const AL_TreeNodeBinSearchList<DWORD, DWORD>* pConstTreeNode41 = cTreeSearchBin.GetChildNodeRightAtNode(pConstTreeNode31);
	AL_TreeNodeBinSearchList<DWORD, DWORD>* pTreeNode41 = const_cast<AL_TreeNodeBinSearchList<DWORD, DWORD>*>(pConstTreeNode41);

	const AL_TreeNodeBinSearchList<DWORD, DWORD>* pConstTreeNode33 = cTreeSearchBin.GetChildNodeRightAtNode(pTreeNode20);
	AL_TreeNodeBinSearchList<DWORD, DWORD>* pTreeNode33 = const_cast<AL_TreeNodeBinSearchList<DWORD, DWORD>*>(pConstTreeNode33);

	if (NULL != pTreeNode) {
		std::cout<<pTreeNode->GetLevel()<<"    "<<pTreeNode->GetData()<<"    "<<pTreeNode->GetDegree()<<std::endl;
		std::cout<<pTreeNode->IsLeaf()<<"    "<<pTreeNode->IsBranch()<<"    "<<pTreeNode->IsParent(pTreeNode)<<"    "<<pTreeNode->IsParent(pTreeNode33)<<std::endl;
	}
	if (NULL != pTreeNode20) {
		std::cout<<pTreeNode20->GetLevel()<<"    "<<pTreeNode20->GetData()<<"    "<<pTreeNode20->GetDegree()<<std::endl;
		std::cout<<pTreeNode20->IsLeaf()<<"    "<<pTreeNode20->IsBranch()<<"    "<<pTreeNode20->IsParent(pTreeNode)<<"    "<<pTreeNode20->IsParent(pTreeNode33)<<std::endl;
	}
	if (NULL != pTreeNode33) {
		std::cout<<pTreeNode33->GetLevel()<<"    "<<pTreeNode33->GetData()<<"    "<<pTreeNode33->GetDegree()<<std::endl;
		std::cout<<pTreeNode33->IsLeaf()<<"    "<<pTreeNode33->IsBranch()<<"    "<<pTreeNode33->IsParent(pTreeNode)<<"    "<<pTreeNode33->IsParent(pTreeNode33)<<std::endl;
	}

	const AL_TreeNodeBinSearchList<DWORD, DWORD>*	pChild = NULL;
	pChild = cTreeSearchBin.GetChildNodeRightAtNode(pTreeNode);
	if (NULL != pChild) {
		std::cout<<pChild->GetLevel()<<"    "<<pChild->GetData()<<"    "<<pChild->GetDegree()<<std::endl;
		std::cout<<pChild->IsLeaf()<<"    "<<pChild->IsBranch()<<"    "<<pChild->IsParent(pTreeNode)<<"    "<<pChild->IsParent(pTreeNode33)<<std::endl;
	}
	pChild = cTreeSearchBin.GetChildNodeLeftAtNode(pTreeNode);
	if (NULL != pChild) {
		std::cout<<pChild->GetLevel()<<"    "<<pChild->GetData()<<"    "<<pChild->GetDegree()<<std::endl;
		std::cout<<pChild->IsLeaf()<<"    "<<pChild->IsBranch()<<"    "<<pChild->IsParent(pTreeNode)<<"    "<<pChild->IsParent(pTreeNode33)<<std::endl;
	}
	pChild = cTreeSearchBin.GetChildNodeLeftAtNode(pTreeNode);
	if (NULL != pChild) {
		std::cout<<pChild->GetLevel()<<"    "<<pChild->GetData()<<"    "<<pChild->GetDegree()<<std::endl;
		std::cout<<pChild->IsLeaf()<<"    "<<pChild->IsBranch()<<"    "<<pChild->IsParent(pTreeNode)<<"    "<<pChild->IsParent(pTreeNode33)<<std::endl;
	}
	pChild = cTreeSearchBin.GetChildNodeRightAtNode(pTreeNode);
	if (NULL != pChild) {
		std::cout<<pChild->GetLevel()<<"    "<<pChild->GetData()<<"    "<<pChild->GetDegree()<<std::endl;
		std::cout<<pChild->IsLeaf()<<"    "<<pChild->IsBranch()<<"    "<<pChild->IsParent(pTreeNode)<<"    "<<pChild->IsParent(pTreeNode33)<<std::endl;
	}
	pChild = cTreeSearchBin.GetChildNodeRightAtNode(pTreeNode);
	if (NULL != pChild) {
		std::cout<<pChild->GetLevel()<<"    "<<pChild->GetData()<<"    "<<pChild->GetDegree()<<std::endl;
		std::cout<<pChild->IsLeaf()<<"    "<<pChild->IsBranch()<<"    "<<pChild->IsParent(pTreeNode)<<"    "<<pChild->IsParent(pTreeNode33)<<std::endl;
	}

	bEmpty = cTreeSearchBin.IsEmpty();
	std::cout<<bEmpty<<std::endl;
	dwDegree = cTreeSearchBin.GetDegree();
	std::cout<<dwDegree<<std::endl;
	dwHeight = cTreeSearchBin.GetHeight();
	std::cout<<dwHeight<<std::endl;
	dwNodesNum = cTreeSearchBin.GetNodesNum();
	std::cout<<dwNodesNum<<std::endl;

	AL_ListSingle<DWORD> cListData;
	AL_ListSingle<DWORD> cListKey;
	BOOL bSibling = cTreeSearchBin.GetSiblingAtNode(pTreeNode, cListData, cListKey);
	if (TRUE == bSibling) {
		for (DWORD dwCnt=0; dwCnt<cListData.Length(); dwCnt++) {
			if (TRUE == cListData.Get(dwCnt, dwData) && TRUE == cListKey.Get(dwCnt, dwKey)) {
				std::cout<<"["<<dwData<<", "<<dwKey<<"]"<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListData.Clear();

	bSibling = cTreeSearchBin.GetSiblingAtNode(pTreeNode20, cListData, cListKey);
	if (TRUE == bSibling) {
		for (DWORD dwCnt=0; dwCnt<cListData.Length(); dwCnt++) {
			if (TRUE == cListData.Get(dwCnt, dwData) && TRUE == cListKey.Get(dwCnt, dwKey)) {
				std::cout<<"["<<dwData<<", "<<dwKey<<"]"<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListData.Clear();

	BOOL bAncestor = cTreeSearchBin.GetAncestorAtNode(pRootNode, cListData, cListKey);
	if (TRUE == bAncestor) {
		for (DWORD dwCnt=0; dwCnt<cListData.Length(); dwCnt++) {
			if (TRUE == cListData.Get(dwCnt, dwData) && TRUE == cListKey.Get(dwCnt, dwKey)) {
				std::cout<<"["<<dwData<<", "<<dwKey<<"]"<<", ";
			}
		}	
		std::cout<<std::endl;
	}

	bAncestor = cTreeSearchBin.GetAncestorAtNode(pTreeNode33, cListData, cListKey);
	if (TRUE == bAncestor) {
		for (DWORD dwCnt=0; dwCnt<cListData.Length(); dwCnt++) {
			if (TRUE == cListData.Get(dwCnt, dwData) && TRUE == cListKey.Get(dwCnt, dwKey)) {
				std::cout<<"["<<dwData<<", "<<dwKey<<"]"<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListData.Clear();

	BOOL bDescendant = cTreeSearchBin.GetDescendantAtNode(pRootNode, cListData, cListKey);
	if (TRUE == bDescendant) {
		for (DWORD dwCnt=0; dwCnt<cListData.Length(); dwCnt++) {
			if (TRUE == cListData.Get(dwCnt, dwData) && TRUE == cListKey.Get(dwCnt, dwKey)) {
				std::cout<<"["<<dwData<<", "<<dwKey<<"]"<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListData.Clear();

	bDescendant = cTreeSearchBin.GetDescendantAtNode(pTreeNode33, cListData, cListKey);
	if (TRUE == bDescendant) {
		for (DWORD dwCnt=0; dwCnt<cListData.Length(); dwCnt++) {
			if (TRUE == cListData.Get(dwCnt, dwData) && TRUE == cListKey.Get(dwCnt, dwKey)) {
				std::cout<<"["<<dwData<<", "<<dwKey<<"]"<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListData.Clear();

	BOOL bOrder = cTreeSearchBin.PreOrderTraversal(cListData, cListKey);
	if (TRUE == bOrder) {
		for (DWORD dwCnt=0; dwCnt<cListData.Length(); dwCnt++) {
			if (TRUE == cListData.Get(dwCnt, dwData) && TRUE == cListKey.Get(dwCnt, dwKey)) {
				std::cout<<"["<<dwData<<", "<<dwKey<<"]"<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListData.Clear();

	bOrder = cTreeSearchBin.InOrderTraversal(cListData, cListKey);
	if (TRUE == bOrder) {
		for (DWORD dwCnt=0; dwCnt<cListData.Length(); dwCnt++) {
			if (TRUE == cListData.Get(dwCnt, dwData) && TRUE == cListKey.Get(dwCnt, dwKey)) {
				std::cout<<"["<<dwData<<", "<<dwKey<<"]"<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListData.Clear();

	bOrder = cTreeSearchBin.PostOrderTraversal(cListData, cListKey);
	if (TRUE == bOrder) {
		for (DWORD dwCnt=0; dwCnt<cListData.Length(); dwCnt++) {
			if (TRUE == cListData.Get(dwCnt, dwData) && TRUE == cListKey.Get(dwCnt, dwKey)) {
				std::cout<<"["<<dwData<<", "<<dwKey<<"]"<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListData.Clear();

	bOrder = cTreeSearchBin.LevelOrderTraversal(cListData, cListKey);
	if (TRUE == bOrder) {
		for (DWORD dwCnt=0; dwCnt<cListData.Length(); dwCnt++) {
			if (TRUE == cListData.Get(dwCnt, dwData) && TRUE == cListKey.Get(dwCnt, dwKey)) {
				std::cout<<"["<<dwData<<", "<<dwKey<<"]"<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListData.Clear();

	//	cTreeSearchBin.Remove(pTreeNode20);
	bOrder = cTreeSearchBin.LevelOrderTraversal(cListData, cListKey);
	if (TRUE == bOrder) {
		for (DWORD dwCnt=0; dwCnt<cListData.Length(); dwCnt++) {
			if (TRUE == cListData.Get(dwCnt, dwData) && TRUE == cListKey.Get(dwCnt, dwKey)) {
				std::cout<<"["<<dwData<<", "<<dwKey<<"]"<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListData.Clear();
	bEmpty = cTreeSearchBin.IsEmpty();
	std::cout<<bEmpty<<std::endl;
	dwDegree = cTreeSearchBin.GetDegree();
	std::cout<<dwDegree<<std::endl;
	dwHeight = cTreeSearchBin.GetHeight();
	std::cout<<dwHeight<<std::endl;
	dwNodesNum = cTreeSearchBin.GetNodesNum();
	std::cout<<dwNodesNum<<std::endl;

	BOOL bRemoveNode = cTreeSearchBin.RemoveNode(66);
	std::cout<<bRemoveNode<<std::endl;
	bOrder = cTreeSearchBin.LevelOrderTraversal(cListData, cListKey);
	if (TRUE == bOrder) {
		for (DWORD dwCnt=0; dwCnt<cListData.Length(); dwCnt++) {
			if (TRUE == cListData.Get(dwCnt, dwData) && TRUE == cListKey.Get(dwCnt, dwKey)) {
				std::cout<<"["<<dwData<<", "<<dwKey<<"]"<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListData.Clear();

	BOOL bRemove = cTreeSearchBin.Remove(65);
	std::cout<<bRemove<<std::endl;
	bEmpty = cTreeSearchBin.IsEmpty();
	std::cout<<bEmpty<<std::endl;
	pConstRootNode = cTreeSearchBin.GetRootNode();
	pRootNode = const_cast<AL_TreeNodeBinSearchList<DWORD, DWORD>*>(pConstRootNode);
	std::cout<<pRootNode<<std::endl;
	dwDegree = cTreeSearchBin.GetDegree();
	std::cout<<dwDegree<<std::endl;
	dwHeight = cTreeSearchBin.GetHeight();
	std::cout<<dwHeight<<std::endl;
	dwNodesNum = cTreeSearchBin.GetNodesNum();
	std::cout<<dwNodesNum<<std::endl;

	delete pTreeSearchBin;
	pTreeSearchBin = NULL;
#endif
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐