您的位置:首页 > 移动开发 > IOS开发

PCIe设备漫游记----BIOS篇

2013-10-14 13:05 489 查看
调试个人经验之谈:

当主板在BIOS阶段枚举PCIE时,如果PCIE没有初始化完成,就使设备无法被枚举成功,主板会关闭slot时钟输出。一定要注意这个时间差,设备一定要初始化完成。正常枚举后一定可以访问设备寄存器空间如BAR。如果不能被正常配置,则设备没正常工作。

初步了解完PCI总线标准之后,我们接下来正式开始PCIe设备的漫游之旅。从我们按下PC的电源按钮开始,BIOS就接管系统控制权开始工作,它会先进行一些内存和设备的初始化工作(当然,也包括我们的PCI设备),由于商业上的原因,Phoenix等厂商的BIOS代码需要授权协议,在此,我们以另外一个款开源BIOS(openbios)为例,来剖析BIOS中,我们的PCIe设备是如何被找到以及初始化的。



PCI设备的扫描是基于深度优先搜索算法(DFS:Depth First Search),也就是说,下级分支最多的PCI桥将最先完成其子设备的扫描。下面我们以图片来具体说明,BIOS是如何一步步完成PCI 设备扫描的。

第一步:

PCI Host 主桥扫描Bus 0上的设备(在一个处理器系统中,一般将与HOST主桥直接相连的PCI总线被命名为PCI Bus 0),系统首先会忽略Bus 0上的D1,D2等不会挂接PCI桥的设备,主桥发现Bridge 1后,将Bridge1 下面的PCI Bus定为 Bus 1,系统将初始化Bridge 1的配置空间,并将该桥的Primary Bus Number 和 Secondary Bus Number寄存器分别设置成0和1,以表明Bridge1 的上游总线是0,下游总线是1,由于还无法确定Bridge1下挂载设备的具体情况,系统先暂时将Subordinate
Bus Number设为0xFF。如下图所示:



第二步:

系统开始扫描Bus 1,将会发现Bridge 2。系统将Bridge 2下面的PCI Bus定为Bus 2,并将该桥的Primary Bus Number 和 Secondary Bus Number寄存器分别设置成1和2,和上一步一样暂时把Bridge 2 的Subordinate Bus Number设为0xFF。如下图所示:



第三步:

系统继续扫描Bus 2,将会发现Bridge 4。系统将Bridge 4下面的PCI Bus定为Bus 3,并将该桥的Primary Bus Number 和 Secondary Bus Number寄存器分别设置成2和3,此后

系统继续扫描后发现Bus 3 下面已经没有任何Bridge了,意味着该PCI总线下已经没有任何挂载下游总线了,因此Bridge 4的Subordinate Bus Number的值已经可以确定为3了。

如下图所示:



第四步:

完成Bus 3的扫描后,系统返回到Bus 2继续扫描,发现Bus 2下面已经没有其他Bridge了。此时Bridge 2的Subordinate Bus Number的值也已经可以确定为3了。如下图所示:



第五步:

完成Bus 2的扫描后,系统返回到Bus1继续扫描,会发现Bridge 3,系统将Bridge 3下面的PCI Bus定为Bus 4。并将Bridge 4的Primary Bus Number 和 Secondary Bus Number寄存器分别设置成1和4,此后系统继续扫描后发现Bus 4 下面已经没有任何Bridge了,意味着该PCI总线下已经没有挂载任何下游总线了,因此Bridge 3 的Subordinate Bus Number的值已经可以确定为4了。如下图所示:



第六步:

完成Bus 4的扫描后,系统返回到Bus 1继续扫描, 发现Bus 1下面已经没有其他Bridge了。此时Bridge 1的Subordinate Bus Number的值已经可以确定为4,系统返回Bus 0继续扫描(Bus 0下如果有其他它Bridge,将重复上述的步骤进行扫描)。至此,本例中的整个PCI的设备扫描已经完成了。最终的设备和总线的扫描结果如下图所示。



了解了上面PCI设备扫描的大概流程,我们接下来看看Bios代码中具体是如何实现这些扫描的。

一般来说,我们可以通过两个寄存器来访问PCI的配置空间(寄存器CONFIG_ADDRESS与CONFIG_DATA),在x86体系下,这两个寄存器分别对应0xCF8和0xCFC端口,对配置空间
20000
的访问都是通过对这两个寄存器的读写来实现先。CONFIG_ADDRESS寄存器的具体位组成如下图所示:



Bus Number : 总线号(8 bit),范围0--255。

Device Number: 设备号(5 bit),范围0--31。

Function Number: 功能号(3 bit),范围0--7。

Register Number: 寄存器号(6 bit),范围0--63 (配置空间一共256个字节,分割成64个4字节的寄存器,从0--63编号)。

每个PCI设备可根据上图所示的四个信息:Bus Number, Device Number, Function Number,Register Number 来进行具体设备的定位并对其配置空间访问。当我们要访问PCI设备的配置空间时,先根据以上格式设置CONFIG_ADDRESS寄存器,然后再读取CONFIG_DATA寄存器即可得到相应的配置空间寄存器的值。

因此,BIOS中PCI配置空间的读写可以封装成下面的函数:

[cpp] view
plaincopy

static inline uint32_t pci_config_read32(pci_addr dev, uint8_t reg)

{

outl(dev | reg, 0xcf8);

return inl(0xcfc | reg);

}

static inline void pci_config_write32(pci_addr dev, uint8_t reg, uint32_t val)

{

outl(dev | reg, 0xcf8);

outl(val, 0xcfc);

}

总体来说。该BIOS扫描过程中调用如下几个主要的函数:

ob_pci_init ----> ob_scan_pci_bus ----> pci_find_device ----> ob_pci_configure

下面我们来具体看看代码,首先BIOS执行ob_pci_init(void)函数

[cpp] view
plaincopy

int ob_pci_init(void)

{

int bus;

unsigned long mem_base, io_base;

char *path;

#ifdef CONFIG_DEBUG_PCI

printk("Initializing PCI devices...\n");

#endif

/* brute force bus scan */

/* Find all PCI bridges */

//获取系统指定的memeory与I/O空间的范围,分配给PCIe设备。

mem_base = arch->mem_base;

/* I/O ports under 0x400 are used by devices mapped at fixed

location. */

io_base = arch->io_base + 0x400;

path = strdup("");

/*遍历256条总线*/

for (bus = 0; bus<0x100; bus++) {

ob_scan_pci_bus(bus, &mem_base, &io_base, &path);

}

free(path);

return 0;

}

总线扫描具体实现:

[cpp] view
plaincopy

static void ob_scan_pci_bus(int bus, unsigned long *mem_base,

unsigned long *io_base, char **path)

{

int devnum, fn, is_multi, vid, did;

unsigned int htype;

pci_addr addr;

pci_config_t config;

const pci_dev_t *pci_dev;

uint32_t ccode;

uint8_t class, subclass, iface, rev;

activate_device("/");

for (devnum = 0; devnum < 32; devnum++) {

is_multi = 0;

for (fn = 0; fn==0 || (is_multi && fn<8); fn++) {

#ifdef CONFIG_XBOX

if (pci_xbox_blacklisted (bus, devnum, fn))

continue;

#endif

addr = PCI_ADDR(bus, devnum, fn); /*获取设备配置空间地址*/

vid = pci_config_read16(addr, PCI_VENDOR_ID); /*获取Vendor ID*/

did = pci_config_read16(addr, PCI_DEVICE_ID); /*获取Device ID*/

if (vid==0xffff || vid==0)

continue;

ccode = pci_config_read16(addr, PCI_CLASS_DEVICE);

class = ccode >> 8;

subclass = ccode;

iface = pci_config_read8(addr, PCI_CLASS_PROG);

rev = pci_config_read8(addr, PCI_REVISION_ID);

pci_dev = pci_find_device(class, subclass, iface,/*具体设备查找以及初始化*/

vid, did);

#ifdef CONFIG_DEBUG_PCI

printk("%x:%x.%x - %x:%x - ", bus, devnum, fn,

vid, did);

#endif

htype = pci_config_read8(addr, PCI_HEADER_TYPE);

if (fn == 0)

is_multi = htype & 0x80;

if (pci_dev == NULL || pci_dev->name == NULL)

snprintf(config.path, sizeof(config.path),

"%s/pci%x,%x", *path, vid, did);

else

snprintf(config.path, sizeof(config.path),

"%s/%s", *path, pci_dev->name);

#ifdef CONFIG_DEBUG_PCI

printk("%s - ", config.path);

#endif

config.dev = addr & 0x00FFFFFF;

REGISTER_NAMED_NODE(ob_pci_node, config.path);

activate_device(config.path);

ob_pci_configure(addr, &config, mem_base, io_base); /*配置设备的配置空间*/

ob_pci_add_properties(addr, pci_dev, &config);

if (class == PCI_BASE_CLASS_BRIDGE &&

(subclass == PCI_SUBCLASS_BRIDGE_HOST ||

subclass == PCI_SUBCLASS_BRIDGE_PCI)) {

/* host or bridge */

free(*path);

*path = strdup(config.path);

}

}

}

device_end();

}

具体某条总线上的设备扫描由以下函数实现:

[cpp] view
plaincopy

<pre name="code" class="cpp">const pci_dev_t *pci_find_device (uint8_t class, uint8_t subclass,

uint8_t iface, uint16_t vendor,

uint16_t product)

{

int (*config_cb)(const pci_config_t *config);

const pci_class_t *pclass;

const pci_subclass_t *psubclass;

const pci_iface_t *piface;

const pci_dev_t *dev;

const void *private;

pci_dev_t *new;

const char *name, *type;

name = "unknown";

type = "unknown";

config_cb = NULL;

private = NULL;

if (class == 0x00 && subclass == 0x01) {

/* Special hack for old style VGA devices */

class = 0x03;

subclass = 0x00;

} else if (class == 0xFF) {

/* Special case for misc devices */

dev = misc_pci;

goto find_device;

}

if (class > (sizeof(pci_classes) / sizeof(pci_class_t))) {

name = "invalid PCI device";

type = "invalid";

goto bad_device;

}

pclass = &pci_classes[class];

name = pclass->name;

type = pclass->type;

for (psubclass = pclass->subc; ; psubclass++) {

if (psubclass->subclass == 0xFF)

goto bad_device;

if (psubclass->subclass == subclass) {

if (psubclass->name != NULL)

name = psubclass->name;

if (psubclass->type != NULL)

type = psubclass->type;

if (psubclass->config_cb != NULL) {

config_cb = psubclass->config_cb;

}

if (psubclass->private != NULL)

private = psubclass->private;

if (psubclass->iface != NULL)

break;

dev = psubclass->devices;

goto find_device;

}

}

for (piface = psubclass->iface; ; piface++) {

if (piface->iface == 0xFF) {

dev = psubclass->devices;

break;

}

if (piface->iface == iface) {

if (piface->name != NULL)

name = piface->name;

if (piface->type != NULL)

type = piface->type;

if (piface->config_cb != NULL) {

config_cb = piface->config_cb;

}

if (piface->private != NULL)

private = piface->private;

dev = piface->devices;

break;

}

}

find_device:

if (dev == NULL)

goto bad_device;

for (;; dev++) {

if (dev->vendor == 0xFFFF && dev->product == 0xFFFF) {

goto bad_device;

}

if (dev->vendor == vendor && dev->product == product) {

if (dev->name != NULL)

name = dev->name;

if (dev->type != NULL)

type = dev->type;

if (dev->config_cb != NULL) {

config_cb = dev->config_cb;

}

if (dev->private != NULL)

private = dev->private;

new = malloc(sizeof(pci_dev_t));

if (new == NULL)

return NULL;

new->vendor = vendor;

new->product = product;

new->type = type;

new->name = name;

new->model = dev->model;

new->compat = dev->compat;

new->acells = dev->acells;

new->scells = dev->scells;

new->icells = dev->icells;

new->config_cb = config_cb;

new->private = private;

return new;

}

}

bad_device:

printk("Cannot manage '%s' PCI device type '%s':\n %x %x (%x %x %x)\n",

name, type, vendor, product, class, subclass, iface);

return NULL;

}

配置具体设备的配置空间

static void ob_pci_configure(pci_addr addr, pci_config_t *config, unsigned long *mem_base,

unsigned long *io_base)

{

uint32_t smask, omask, amask, size, reloc, min_align;

unsigned long base;

pci_addr config_addr;

int reg;

uint8_t irq_pin, irq_line;

/*配置中断引脚与中断编号*/

irq_pin = pci_config_read8(addr, PCI_INTERRUPT_PIN);

if (irq_pin) {

config->irq_pin = irq_pin;

irq_pin = (((config->dev >> 11) & 0x1F) + irq_pin - 1) & 3;

irq_line = arch->irqs[irq_pin];

pci_config_write8(addr, PCI_INTERRUPT_LINE, irq_line);

config->irq_line = irq_line;

} else

config->irq_line = -1;

/*配置memory空间和I/O空间*/

omask = 0x00000000;

for (reg = 0; reg < 7; reg++) {

config->assigned[reg] = 0x00000000;

config->sizes[reg] = 0x00000000;

if ((omask & 0x0000000f) == 0x4) {

/* 64 bits memory mapping */

continue;

}

if (reg == 6)

config_addr = PCI_ROM_ADDRESS;

else

config_addr = PCI_BASE_ADDR_0 + reg * 4;

config->regions[reg] = pci_config_read32(addr, config_addr);

/* get region size */

pci_config_write32(addr, config_addr, 0xffffffff);

smask = pci_config_read32(addr, config_addr);

if (smask == 0x00000000 || smask == 0xffffffff)

continue;

if (smask & 0x00000001 && reg != 6) {

/* I/O space */

base = *io_base;

min_align = 1 << 7;

amask = 0x00000001;

pci_config_write16(addr, PCI_COMMAND,

pci_config_read16(addr,

PCI_COMMAND) |

PCI_COMMAND_IO);

} else {

/* Memory Space */

base = *mem_base;

min_align = 1 << 16;

amask = 0x0000000F;

if (reg == 6) {

smask |= 1; /* ROM */

}

pci_config_write16(addr, PCI_COMMAND,

pci_config_read16(addr,

PCI_COMMAND) |

PCI_COMMAND_MEMORY);

}

omask = smask & amask;

smask &= ~amask;

size = (~smask) + 1;

config->sizes[reg] = size;

reloc = base;

if (size < min_align)

size = min_align;

reloc = (reloc + size -1) & ~(size - 1);

if (*io_base == base) {

*io_base = reloc + size;

reloc -= arch->io_base;

} else {

*mem_base = reloc + size;

}

pci_config_write32(addr, config_addr, reloc | omask);

config->assigned[reg] = reloc | omask;

}

}

通过以上这些步骤,Bios就完成了所有PCI设备的扫描,并且为每个设备分配好了系统资源。<br>

</pre>

<pre></pre>
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: