您的位置:首页 > 其它

堆排序简介及其实现

2013-10-03 10:36 134 查看
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,可以利用数组的特点快速定位指定索引的元素
起源





堆排序[1]

1991年计算机先驱奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德(Robert W.Floyd)和威廉姆斯(J.Williams)在1964年共同发明了著名的堆排序算法( Heap Sort )


2定义

定义:

n个关键字序列Kl,K2,…,Kn称为(Heap),当且仅当该序列满足如下性质(简称为堆性质):

(1)ki<=k(2i)且ki<=k(2i+1)(1≤i≤ n),当然,这是小根堆,大根堆则换成>=号。//k(i)相当于二叉树的非叶子结点,K(2i)则是左子节点,k(2i+1)是右子节点

若将此序列所存储的向量R[1..n]看做是一棵完全二叉树存储结构,则堆实质上是满足如下性质的完全二叉树:





树中任一非叶子结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。

【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。

大根堆和小根堆:根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆,又称最小堆。根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆,又称最大堆。注意:①堆中任一子树亦是堆。②以上讨论的堆实际上是二叉堆(Binary
Heap),类似地可定义k叉堆。

高度

堆可以被看成是一棵树,结点在堆中的高度可以被定义为从本结点到叶子结点的最长简单下降路径上边的数目;定义堆的高度为树根的高度。我们将看到,堆结构上的一些基本操作的运行时间至多是与树的高度成正比,为O(lgn)。



简介

堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。

(1)用大根堆排序的基本思想

① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区

② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R
交换,由此得到新的无序区R[1..n-1]和有序区R
,且满足R[1..n-1].keys≤R
.key

③由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。

……

直到无序区只有一个元素为止。

(2)大根堆排序算法的基本操作:

① 初始化操作:将R[1..n]构造为初始堆;

② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。

注意

①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。

②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止

特点

堆排序(HeapSort)是一树形选择排序。堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系(参见二叉树的顺序存储结构),在当前无序区中选择关键字最大(或最小)的记录

区别

直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。

堆排序可通过树形结构保存部分比较结果,可减少比较次数。


4算法分析

堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。

最坏

时间复杂度O(nlogn)

平均性能

较接近于最坏性能。

其他性能

由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。

堆排序是就地排序,辅助空间为O(1),

它是不稳定的排序方法。

C语言实现

#include <iostream>

using namespace std;
//这个堆排序在建立堆的时候 没有采用递归的方式确实 采用for循环或者while循环同样可以完成
//结束条件就是到达最后一个非叶子节点之后调整完毕  由于  nlength = nmax +1
// array是待调整的堆数组,i是待调整的数组元素的位置,nlength是数组的长度
//本函数功能是:根据数组array构建大根堆

void HeapAdjust(int array[], int i, int nLength)
{
    int nChild;
    int nTemp;
    for (nTemp = array[i]; 2 * i + 1 < nLength; i = nChild)
    {
        // 子结点的位置=2*(父结点位置)+ 1
        nChild = 2 * i + 1;
        // 得到子结点中较大的结点  通过左右节点的比较
        if ( nChild < nLength-1 && array[nChild + 1] > array[nChild])
            ++nChild;
        // 如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点
        if (nTemp < array[nChild])
        {
            array[i] = array[nChild];
            array[nChild]= nTemp;
        }
        else
        // 否则退出循环
            break;
            //若没有退出循环  则由i = nChild  判断 下一个节点其实通过递归 将nChild  放进HeapAdjust里面的i之后也是可以的
    }
}

// 堆排序算法
void HeapSort(int array[],int length)
{
    int tmp;
    // 调整序列的前半部分元素,调整完之后第一个元素是序列的最大的元素
    //length/2-1是第一个非叶节点,此处"/"为整除
    for (int i = length / 2 - 1; i >= 0; --i)
        HeapAdjust(array, i, length);
    // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
    for (int i = length - 1; i > 0; --i)
    {
        // 把第一个元素和当前的最后一个元素交换,
        // 保证当前的最后一个位置的元素都是在现在的这个序列之中最大的
      ///  Swap(&array[0], &array[i]);
          tmp = array[i];
          array[i] = array[0];
          array[0] = tmp;
        // 不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值
        HeapAdjust(array, 0, i);
    }
}

int main()
{
    int array[] = {1,4,2,5,6,3,7,8,9,0};
    HeapSort(array,10);
    for(int i=0;i<10;i++)
    cout<<array[i]<<"  ";
    cout << "Hello world!" << endl;
    return 0;
}



5示例代码

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: