您的位置:首页 > 职场人生

华为9月面试总结

2013-09-30 00:51 281 查看
面的岗位是网络操作系统类,主要的问题如下几个

1, 什么是总线;

2. 什么是操作系统,包括哪些部分?

3. 什么是嵌入式操作系统;

4. 什么是实时操作系统,如何实现实时?

5. TCP/IP是什么?MAC层是什么,有什么作用?数据链路层与MAC、LLC之间关系?

---------------------------------------------------------------------------------------------------------------------------------------

1.    三层交换机与路由器的区别:

虽然他们都具有路由功能。   但是三层交换机的主要功能仍是数据交换,它的路由功能通常比较简单,因为它所面对的主要是简单的局域网连接,路由路径远没有路由器那么复杂,它用在局域网中的主要用途还是提供快速数据交换功能,满足局域网数据交换频繁的应用特点。

路由器的主要功能还是路由功能,它的路由功能更多的体现在不同类型网络之间的互联上,如局域网与广域网之间的连接、不同协议的网络之间的连接等,所以路由器主要是用于不同类型的网络之间。它最主要的功能就是路由转发,解决好各种复杂路由路径网络的连接就是它的最终目的,所以路由器的路由功能通常非常强大,不仅适用于同种协议的局域网间,更适用于不同协议的局域网与广域网间。它的优势在于选择最佳路由、负荷分担、链路备份及和其他网络进行路由信息的交换等等路由器所具有功能。为了与各种类型的网络连接,路由器的接口类型非常丰富,而三层交换机则一般仅同类型的局域网接口,非常简单。

从技术上讲,路由器和三层交换机在数据包交换操作上存在着明显区别。路由器一般由基于微处理器的软件路由引擎执行数据包交换,而三层交换机通过硬件执行数据包交换。三层交换机在对第一个数据流进行路由后,它将会产生一个MAC地址与IP地址的映射表,当同样的数据流再次通过时,将根据此表直接从二层通过而不是再次路由,从而消除了路由器进行路由选择而造成网络的延迟,提高了数据包转发的效率。同时,三层交换机的路由查找是针对数据流的,它利用缓存技术,很容易利用ASIC技术来实现,因此,可以大大节约成本,并实现快速转发。而路由器的转发采用最长匹配的方式,实现复杂,通常使用软件来实现,转发效率较低。

正因如此,从整体性能上比较的话,三层交换机的性能要远优于路由器,非常适用于数据交换频繁的局域网中;而路由器虽然路由功能非常强大,但它的数据包转发效率远低于三层交换机,更适合于数据交换不是很频繁的不同类型网络的互联,如局域网与互联网的互联。如果把路由器,特别是高档路由器用于局域网中,则在相当大程度上是一种浪费(就其强大的路由功能而言),而且还不能很好地满足局域网通信性能需求,影响子网间的正常通信

综上所述,在局域网中进行多子网连接,最好还选用三层交换机,特别是在不同子网数据交换频繁的环境中。一方面可以确保子网间的通信性能需求,另一方面省去了另外购买交换机的投资。当然,如果子网间的通信不是很频繁,采用路由器也无可厚非,也可达到子网安全隔离相互通信的目的。具体要根据实际需求来定。

三层交换与路由最大的区别就在于:路由支持nat转换,而三层不支持。在实际工程中体现出来就在:路由上直接接光纤可以上网,而将光纤接到层三设备上是不能上网了。三层每个端口都有专用的mac地址,有专用的ASIC集成电路。

2.    英特网的结构:






3.    以太网和令牌环网的区别:

以太网是这样通信的,每台电脑位于同一个主干中都可以向主干线路中发信息

串。假如a吧,它先监听主干线路上有没有人在发信息,如果有它就等一会儿,在它发现没有人发言后它将发言,但这时有可能另一台电脑也和它同时发言(想象一下在课堂上两个学生向老师同时提问),这样它们会同时停止发言,并在等待了一个随机时间后继续发言,当然它们的随机时间是不同的,并且在再次发言前仍需监听主干上是否有其它主机在发言。其它的电脑读取数据包,检查mac地址和ip地址乃至端口号看是不是发给自已的,如果不是便丢弃。它的mac 算法是csma/cd算法 

令牌环网的结构是组成一个环形,环形的一圈是主机,主机中存在一个令牌,由一号机向下传,每个主机只有在自已有令牌时才能向主线路中发数据

以太网的核心技术是随机争用介质访问控制方法,即带有冲突检测的载波侦听多路访问方法(CSMA/CD)源于无线分组交换网。使用的是IEEE802.3标准令牌环网使用的是IEEE802.5标准

4.    为什么说集线器是物理层设备

在计算机网络中,以太网是非常典型的广播式共享局域网,所以集线器的基本工作原理是广播(Broadcast)技术。在集线器传输过程中,无论从哪一个端口收到一个数据包时,都将此数据包广播到其他端口。而集线器不具有寻址功能,所以它并不记忆每个端口所连接网卡的MAC地址。

当集线器将数据包以广播方式发出时,连接在集线器端口上的网卡将判断这个包是否是发送给自己的,如果是,则根据以太网数据包所要求的功能执行相应的动作,如果不是则丢掉。集线器对数据包中的内容不进行处理,它只负责将从一个端口上收到的数据广播到所有其他端口

5.    数据链路层
http://blog.csdn.net/lycb_gz/article/details/1420735
数据链路层是OSI参考模型中的第二层,介乎于物理层和网络层之间。数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源机网络层来的数据可靠地传输到相邻节点的目标机网络层。为达到这一目的,数据链路必须具备一系列相应的功能,主要有:如何将数据组合成数据块,在数据链路层中称这种数据块为帧(frame),帧是数据链路层的传送单位;如何控制帧在物理信道上的传输,包括如何处理传输差错,如何调节发送速率以使与接收方相匹配;以及在两个网络实体之间提供数据链路通路的建立、维持和释放的管理。

为了使数据链路层能更好地适应多种局域网标准,802 委员会就将局域网[U1] 的数据链路层拆成两个子层:

逻辑链路控制(Logical Link Control或简称LLC)是局域网中数据链路层的上层部分,IEEE 802.2中定义了逻辑链路控制协议。用户的数据链路服务通过LLC子层为网络层提供统一的接口。在LLC子层下面是MAC子层。

MAC层:

MAC(medium access control)属于LLC(Logical Link Control)下的一个子层。局域网中目前广泛采用的两种介质访问控制方法,分别是:

1)  争用型介质访问控制,又称随机型的介质访问控制协议,如CSMA/CD方式。

2)  介质访问控制,又称有序的访问控制协议,如Token(令牌)方式

LLC层:

IEEE802系列标准把数据链路层分成LLC(Logical Link Control,逻辑链路控制)和MAC(Media Access Control,媒介接入控制)两个子层。LLC子层在IEEE802.2标准中定义,为802标准系列共用;而MAC子层协议则依赖于各自的物理层。IEEE802.15.4的MAC层能支持多种LLC标准,通过SSCS(Service-Specific
Convergence Sublayer,业务相关的会聚子层)协议承载IEEE802.2类型一的LLC标准,同时也允许其他LLC标准直接使用IEEE802.15.4 的MAC层的服务。LLC子层给网络层提供了一个统一的逻辑视图。

LLC子层的主要功能包括:

*传输可靠性保障和控制;

数据包的分段与重组;

数据包的顺序传输。

Q:为什么在linux网络栈代码中找不到和csma/cd相关的代码呢?

A:很多厂商生产的网卡上就仅装有 MAC 协议而没有 LLC 协议,直接在网卡中集成了MAC功能。

就原理上,因为MAC地址实际只是在局域网内有效的,虽然说不同设备MAC要求是唯一的,但由于每经过一个路由网段,报文里的源和目的MAC都要做更改(源和目的IP则一直不变),所以实际上就算不同网段中,存在相同的MAC地址,也是没有影响的。只要同一网段MAC地址不重复就可以。

6. 802.3(以太网)

802.3 通常指以太网。一种网络协议。描述物理层数据链路层的MAC子层的实现方法,在多种物理媒体上以多种速率采用CSMA/CD访问方式,对于快速以太网该标准说明的实现方法有所扩展。

早期的IEEE 802.3描述的物理媒体类型包括:10Base2、10Base5、10BaseF、10BaseT和10Broad36等;快速以太网的物理媒体类型包括:100
BaseT、100BaseT4和100BaseX等。

为了使数据链路层能更好地适应多种局域网标准,802 委员会就将局域网的数据链路层拆成两个子层:

逻辑链路控制 LLC (Logical Link Control)子层

媒体接入控制 MAC (Medium AccessControl)子层。

与接入到传输媒体有关的内容都放在 MAC子层,而 LLC 子层则与传输媒体无关,不管采用何种协议的局域网对 LLC 子层来说都是透明的。

由于TCP/IP 体系经常使用的局域网是 DIX Ethernet V2 而不是 802.3 标准中的几种局域网,因此现在 802 委员会制定的逻辑链路控制子层LLC(即 802.2 标准)的作用已经不大了。

很多厂商生产的网卡上就仅装有 MAC 协议而没有 LLC 协议。

MAC子层的数据封装所包括的主要内容有:数据封装分为发送数据封装和接收数据封装两部分,包括成帧、编制和差错检测等功能。

数据封装的过程:当LLC子层请求发送数据帧时,发送数据封装部分开始按MAC子层的帧格式组帧:

(1)将一个前导码P和一个帧起始定界符SFD附加到帧头部分;

(2)填上目的地址、源地址、计算出LLC数据帧的字节数并填入长度字段LEN;

(3)必要时将填充字符PAD附加到LLC数据帧后;

(4)求出CRC校验码附加到帧校验码序列FCS中;

(5)将完成封装后的MAC帧递交MIAC子层的发送介质访问管理部分以供发送; 接收数据解封部分主要用于校验帧的目的地址字段,以确定本站是否应该接受该帧,如地址符合,则将其送到LLC子层,并进行差错校验

7. 802.11

802.11是IEEE最初制定的一个无线局域网标准,主要用于解决办公室局域网和校园网中,用户与用户终端的无线接入,业务主要限于数据存取,速率最高只能达到2Mbps。目前,3Com等公司都有基于该标准的无线网卡。由于802.11在速率和传输距离上都不能满足人们的需要,因此,IEEE小组又相继推出了802.11b802.11a两个新标准。三者之间技术上的主要差别在于MAC子层和物理层

802.11只规定了开放式系统互联参考模型(OSI/RM)的物理层和MAC层,其MAC层利用载波监听多重访问/冲突避免(CSMA/CA)协议,而在物理层,802.11定义了三种不同的物理介质:红外线、跳频扩谱方式(FHSS)以及直扩方式(DSSS)。802.11支持1~11Mb/s的数据速率,但是它只支持数据通信,要进行无线数据通信,数据设备先要安装有无线网卡。

802.11a

IEEE 无线网络标准,指定最大 54Mbps 的数据传输速率和 5GHz 的工作频段。802.11a的传输技术为多载波调制技术。802.11a标准是已在办公室、家庭、宾馆、机场等众多场合得到广泛应用的802.11b无线联网标准的后续标准。它工作在5GHzU-NII频带,物理层速率可达54Mb/s,传输层可达25Mbps。可提供25Mbps的无线ATM接口和10Mbps的以太网无线帧结构接口,以及TDD/TDMA的空中接口;支持语音、数据、图像业务;一个扇区可接入多个用户,每个用户可带多个用户终端。

802.11的第二个分支被指定为802.11a。承受着风险将802.11带入了不同的频带——5.2GHzU-NII频带,并被指定高达54Mbps的数据速率。与单个载波系统802.11b不同,802.11a运用了提高频率信道利用率的正交频率划分多路复用(OFDM)的多载波调制技术。由于802.11a运用5.2GHz射频频谱,因此它与802.11b或最初的802.11WLAN标准均不能进行互操作。

802.11b(wifi)

IEEE802.11b无线局域网的一个标准。其载波的频率为2.4GHz,传送速度为11Mbit/s。IEEE802.11b是所有无线局域网标准中最著名,也是普及最广的标准。它有时也被错误地标为Wi-Fi。实际上Wi-Fi是无线局域网联盟(WLANA)的一个商标,该商标仅保障使用该商标的商品互相之间可以合作,与标准本身实际上没有关系。在2.4-GHz-ISM频段共有14个频宽为22MHz的频道可供使用。IEEE802.11b的后继标准是IEEE802.11g,其传送速度为54Mbit/s。

IEEE 802.11b无线局域网与我们熟悉的IEEE802.3以太网的原理很类似,都是采用载波侦听的方式来控制网络中信息的传送。不同之处是以太网采用的是CSMA/CD(载波侦听/冲突检测)技术,网络上所有工作站都侦听网络中有无信息发送,当发现网络空闲时即发出自己的信息,如同抢答一样,只能有一台工作站抢到发言权,而其余工作站需要继续等待。如果一旦有两台以上的工作站同时发出信息,则网络中会发生冲突,冲突后这些冲突信息都会丢失,各工作站则将继续抢夺发言权。而802.11b无线局域网则引进了CSMA/CA(载波监听多路访问/冲突避免)技术和RTS/CTS(请求发送/清除发送)技术,从而避免了网络中冲突的发生,可以大幅度提高网络效率。    

8. 外网如何访问嵌入式设备

http://wenku.baidu.com/view/4653cd313968011ca3009163.html

9. 嵌入式WEB服务器编写方法

      http://blog.csdn.net/zyboy2000/article/details/8825112
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: