您的位置:首页 > 其它

S3C2440A工程移植:从ADS1.2到RealView MDK

2013-07-06 19:54 218 查看
RealView MDK在中国推出已经有一段时间了,而且作为未来发展的趋势必将取代ADS1.2,成为工程师广泛应用的开发平台。

但是,以前的S3C2440的项目都是由ADS开发,而且我在网上搜索并没有发现有ADS1.2工程移植的例子,只能自己摸索。而且刚刚接触嵌入式的这个部分,希望把这个成果与大家分享,让其他的人少走弯路。

移植思路:

不兼容问题主要在于启动的汇编代码中加入了很多的与编译器相关的调用,只需修改原有的2440init.s部分代码就可以实现。而修改Realview自身引入的s3c2440a.s启动代码修要修改的内容过多。因而,采用第一种方案。

编译中出现的问题以及解决:

1, .\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Main (referred from 2440init.o).

Main -> main,新的Realview MDK中大小写认为名称不同

2,.\output\LJD2440TEST.axf: Error: L6915E: Library reports error: scatter-load file declares no heap or stack regions and __user_initial_stackheap is not defined

加入部分代码

EXPORT __user_initial_stackheap

__user_initial_stackheap

LDR R0, = Heap_Mem

LDR R1, =(Stack_Mem + USR_Stack_Size)

LDR R2, = (Heap_Mem + Heap_Size)

LDR R3, = Stack_Mem

BX LR

3,

.\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Image$$RW$$Limit (referred from 2440lib.o).

.\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Image$$RO$$Base (referred from main.o).

.\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Image$$RO$$Limit (referred from main.o).

.\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Image$$RW$$Base (referred from main.o).

.\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Image$$ZI$$Base (referred from main.o).

.\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Image$$ZI$$Limit (referred from main.o).

办法:

重新编写.sct加载文件

4, Error: L6238E: foo.o(.text) contains invalid call from '~PRES8' function to'REQ8' function Warning: L6306W: '~PRES8' section foo.o(.text) should not use the address of 'REQ8' function foobar

办法:在每个汇编文件的开头,添加“PRESERVE8”指令

附件:

1, 修改过的2440init.s

;=========================================

; NAME: 2440INIT.S

; DESC: C start up codes

; Configure memory, ISR ,stacks

; Initialize C-variables

; HISTORY:

; 2002.02.25:kwtark: ver 0.0

; 2002.03.20:purnnamu: Add some functions for testing STOP,Sleep mode

; 2003.03.14:DonGo: Modified for 2440.

; 2008.07.23:dai modified for RealView MDK, hongjun.dai@gmail.com

;=========================================

GET option.inc

GET memcfg.inc

GET 2440addr.inc

BIT_SELFREFRESH EQU (1<<22)

;Pre-defined constants

USERMODE EQU 0x10

FIQMODE EQU 0x11

IRQMODE EQU 0x12

SVCMODE EQU 0x13

ABORTMODE EQU 0x17

UNDEFMODE EQU 0x1b

MODEMASK EQU 0x1f

NOINT EQU 0xc0

;The location of stacks

UserStack EQU (_STACK_BASEADDRESS-0x3800) ;0x33ff4800 ~

SVCStack EQU (_STACK_BASEADDRESS-0x2800) ;0x33ff5800 ~

UndefStack EQU (_STACK_BASEADDRESS-0x2400) ;0x33ff5c00 ~

AbortStack EQU (_STACK_BASEADDRESS-0x2000) ;0x33ff6000 ~

IRQStack EQU (_STACK_BASEADDRESS-0x1000) ;0x33ff7000 ~

FIQStack EQU (_STACK_BASEADDRESS-0x0) ;0x33ff8000 ~

;=========================================================================================================================

;check if tasm.exe is used.

;arm处理器有两种工作状态 1.arm:32位 这种工作状态下执行字对准的arm指令 2.Thumb:16位 这种工作状态执行半字对准的Thumb指令

;因为处理器分为16位 32位两种工作状态 程序的编译器也是分16位和32两种编译方式 所以下面的程序用于根据处理器工作状态确定编译器编译方式

;code16伪指令指示汇编编译器后面的指令为16位的thumb指令

;code32伪指令指示汇编编译器后面的指令为32位的arm指令

;这段是为了统一目前的处理器工作状态和软件编译方式(16位编译环境使用tasm.exe编译)

;Check if tasm.exe(armasm -16 ...@ADS 1.0) is used.

GBLL THUMBCODE

[ {CONFIG} = 16

THUMBCODE SETL {TRUE}

CODE32

|

THUMBCODE SETL {FALSE}

]

MACRO

MOV_PC_LR

[ THUMBCODE

bx lr

|

mov pc,lr

]

MEND

MACRO

MOVEQ_PC_LR

[ THUMBCODE

bxeq lr

|

moveq pc,lr

]

MEND

;=========================================================================================================================

;注意下面这段程序是个宏定义,下面包含的HandlerXXX HANDLER HandleXXX将都被下面这段程序展开

;这段程序用于把中断服务程序的首地址装载到pc中

;本初始化程序定义了一个数据区(在文件最后),34个字空间,存放相应中断服务程序的首地址。

;每个字空间都有一个标号,以Handle***命名。

MACRO

$HandlerLabel HANDLER $HandleLabel

$HandlerLabel

sub sp,sp,#4 ;decrement sp(to store jump address)

stmfd sp!,{r0} ;PUSH the work register to stack(lr does not push because it return to original address)

ldr r0,=$HandleLabel;load the address of HandleXXX to r0

ldr r0,[r0] ;load the contents(service routine start address) of HandleXXX

str r0,[sp,#4] ;store the contents(ISR) of HandleXXX to stack

ldmfd sp!,{r0,pc} ;POP the work register and pc(jump to ISR)

MEND

;=========================================================================================================================

;一个arm程序由RO,RW,ZI三个断组成 其中RO为代码段,RW是已经初始化的全局变量,ZI是未初始化的全局变量(对于GNU工具 对应的概念是TEXT ,DATA,BSS)

;bootloader要将RW段复制到ram中并将ZI段清零 编译器使用下列段来记录各段的起始和结束地址

; |Image$$RO$$Base| ; RO段起始地址

; |Image$$RO$$Limit| ; RO段结束地址加1

; |Image$$RW$$Base| ; RW段起始地址

; |Image$$RW$$Limit| ; RW段结束地址加1

; |Image$$ZI$$Base| ; ZI段起始地址

; |Image$$ZI$$Limit| ; ZI段结束地址加1

;这些标号的值是通过编译器的设定来确定的 如编译软件中对ro-base和rw-base的设定,例如 ro-base=0xc000000 rw-base=0xc5f0000

IMPORT |Image$$RO$$Base| ; Base of ROM code

IMPORT |Image$$RO$$Limit| ; End of ROM code (=start of ROM data)

IMPORT |Image$$RW$$Base| ; Base of RAM to initialise

IMPORT |Image$$ZI$$Base| ; Base and limit of area

IMPORT |Image$$ZI$$Limit| ; to zero initialise

;DAI stack size configuration DAI, ref s3c2440a.s

;// <h> Stack Configuration (Stack Sizes in Bytes)

;// <o0> Undefined Mode <0x0-0xFFFFFFFF:8>

;// <o1> Supervisor Mode <0x0-0xFFFFFFFF:8>

;// <o2> Abort Mode <0x0-0xFFFFFFFF:8>

;// <o3> Fast Interrupt Mode <0x0-0xFFFFFFFF:8>

;// <o4> Interrupt Mode <0x0-0xFFFFFFFF:8>

;// <o5> User/System Mode <0x0-0xFFFFFFFF:8>

;// </h>

UND_Stack_Size EQU 0x00000000

SVC_Stack_Size EQU 0x00000008

ABT_Stack_Size EQU 0x00000000

FIQ_Stack_Size EQU 0x00000000

IRQ_Stack_Size EQU 0x00000080

USR_Stack_Size EQU 0x00000400

Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + FIQ_Stack_Size + IRQ_Stack_Size + USR_Stack_Size)
AREA STACK, NOINIT, READWRITE, ALIGN=3

Stack_Mem SPACE Stack_Size
Stack_Top EQU Stack_Mem + Stack_Size

;// <h> Heap Configuration

;// <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF>

;// </h>
Heap_Size EQU 0x00000000
AREA HEAP, NOINIT, READWRITE, ALIGN=3

Heap_Mem SPACE Heap_Size

IMPORT MMU_SetAsyncBusMode

IMPORT MMU_SetFastBusMode ;hzh
IMPORT main ; The main entry of mon program
; AREA Init,CODE,READONLY

AREA RESET,CODE,READONLY ;dai

PRESERVE8 ;dai

; ENTRY ;dai

EXPORT __ENTRY

__ENTRY

ResetEntry

;1)The code, which converts to Big-endian, should be in little endian code.

;2)The following little endian code will be compiled in Big-Endian mode.

; The code byte order should be changed as the memory bus width.

;3)The pseudo instruction,DCD can not be used here because the linker generates error.

ASSERT :DEF:ENDIAN_CHANGE

[ ENDIAN_CHANGE

ASSERT :DEF:ENTRY_BUS_WIDTH

[ ENTRY_BUS_WIDTH=32

b ChangeBigEndian ;DCD 0xea000007

]
[ ENTRY_BUS_WIDTH=16

andeq r14,r7,r0,lsl #20 ;DCD 0x0007ea00

]
[ ENTRY_BUS_WIDTH=8

streq r0,[r0,-r10,ror #1] ;DCD 0x070000ea

]

|

b ResetHandler

]

b HandlerUndef ;handler for Undefined mode

b HandlerSWI ;handler for SWI interrupt

b HandlerPabort ;handler for PAbort

b HandlerDabort ;handler for DAbort

b . ;reserved

b HandlerIRQ ;handler for IRQ interrupt

b HandlerFIQ ;handler for FIQ interrupt
;@0x20

b EnterPWDN ; Must be @0x20.

ChangeBigEndian

;@0x24

[ ENTRY_BUS_WIDTH=32

DCD 0xee110f10 ;0xee110f10 => mrc p15,0,r0,c1,c0,0

DCD 0xe3800080 ;0xe3800080 => orr r0,r0,#0x80; //Big-endian

DCD 0xee010f10 ;0xee010f10 => mcr p15,0,r0,c1,c0,0

]

[ ENTRY_BUS_WIDTH=16

DCD 0x0f10ee11

DCD 0x0080e380

DCD 0x0f10ee01

]

[ ENTRY_BUS_WIDTH=8

DCD 0x100f11ee

DCD 0x800080e3

DCD 0x100f01ee

]

DCD 0xffffffff ;swinv 0xffffff is similar with NOP and run well in both endian mode.

DCD 0xffffffff

DCD 0xffffffff

DCD 0xffffffff

DCD 0xffffffff

b ResetHandler

HandlerFIQ HANDLER HandleFIQ

HandlerIRQ HANDLER HandleIRQ

HandlerUndef HANDLER HandleUndef

HandlerSWI HANDLER HandleSWI

HandlerDabort HANDLER HandleDabort

HandlerPabort HANDLER HandlePabort
IsrIRQ ;中断服务程序

sub sp,sp,#4 ;reserved for PC

stmfd sp!,{r8-r9}
ldr r9,=INTOFFSET

ldr r9,[r9]

ldr r8,=HandleEINT0

add r8,r8,r9,lsl #2 ;r8 = r8 + r9*4

ldr r8,[r8]

str r8,[sp,#8]

ldmfd sp!,{r8-r9,pc}

LTORG
;=======

; ENTRY

;=======

ResetHandler

ldr r0,=WTCON ;watch dog disable

ldr r1,=0x0

str r1,[r0]
ldr r0,=INTMSK

ldr r1,=0xffffffff ;all interrupt disable

str r1,[r0]
ldr r0,=INTSUBMSK

ldr r1,=0x7fff ;all sub interrupt disable

str r1,[r0]
[ {FALSE}

;rGPFDAT = (rGPFDAT & ~(0xf<<4)) | ((~data & 0xf)<<4);

; Led_Display

ldr r0,=GPFCON

ldr r1,=0x5500

str r1,[r0]

ldr r0,=GPFDAT

ldr r1,=0x10

str r1,[r0]

]
;To reduce PLL lock time, adjust the LOCKTIME register.

ldr r0,=LOCKTIME

ldr r1,=0xffffff

str r1,[r0]
[ PLL_ON_START

; Added for confirm clock divide. for 2440.

; Setting value Fclk:Hclk:Pclk

ldr r0,=CLKDIVN

ldr r1,=CLKDIV_VAL ; 0=1:1:1, 1=1:1:2, 2=1:2:2, 3=1:2:4, 4=1:4:4, 5=1:4:8, 6=1:3:3, 7=1:3:6.

str r1,[r0]

; MMU_SetAsyncBusMode and MMU_SetFastBusMode over 4K, so do not call here

; call it after copy, hzh

; [ CLKDIV_VAL>1 ; means Fclk:Hclk is not 1:1.

; bl MMU_SetAsyncBusMode

; |

; bl MMU_SetFastBusMode ; default value.

; ]

;program has not been copied, so use these directly, hzh

[ CLKDIV_VAL>1 ; means Fclk:Hclk is not 1:1.

mrc p15,0,r0,c1,c0,0

orr r0,r0,#0xc0000000;R1_nF:OR:R1_iA

mcr p15,0,r0,c1,c0,0

|

mrc p15,0,r0,c1,c0,0

bic r0,r0,#0xc0000000;R1_iA:OR:R1_nF

mcr p15,0,r0,c1,c0,0

]

;Configure UPLL

ldr r0,=UPLLCON

ldr r1,=((U_MDIV<<12)+(U_PDIV<<4)+U_SDIV)

str r1,[r0]

nop ; Caution: After UPLL setting, at least 7-clocks delay must be inserted for setting hardware be completed.

nop

nop

nop

nop

nop

nop

;Configure MPLL

ldr r0,=MPLLCON

ldr r1,=((M_MDIV<<12)+(M_PDIV<<4)+M_SDIV) ;Fin=16.9344MHz

str r1,[r0]

]
;Check if the boot is caused by the wake-up from SLEEP mode.

ldr r1,=GSTATUS2

ldr r0,[r1]

tst r0,#0x2

;In case of the wake-up from SLEEP mode, go to SLEEP_WAKEUP handler.

bne WAKEUP_SLEEP
EXPORT StartPointAfterSleepWakeUp

StartPointAfterSleepWakeUp
;Set memory control registers

;ldr r0,=SMRDATA

adrl r0, SMRDATA ;be careful!, hzh

ldr r1,=BWSCON ;BWSCON Address

add r2, r0, #52 ;End address of SMRDATA
0

ldr r3, [r0], #4

str r3, [r1], #4

cmp r2, r0

bne %B0
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;; When EINT0 is pressed, Clear SDRAM

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; check if EIN0 button is pressed
ldr r0,=GPFCON

ldr r1,=0x0

str r1,[r0]

ldr r0,=GPFUP

ldr r1,=0xff

str r1,[r0]
ldr r1,=GPFDAT

ldr r0,[r1]

bic r0,r0,#(0x1e<<1) ; bit clear

tst r0,#0x1

bne %F1

; Clear SDRAM Start

ldr r0,=GPFCON

ldr r1,=0x55aa

str r1,[r0]

; ldr r0,=GPFUP

; ldr r1,=0xff

; str r1,[r0]

ldr r0,=GPFDAT

ldr r1,=0x0

str r1,[r0] ;LED=****
mov r1,#0

mov r2,#0

mov r3,#0

mov r4,#0

mov r5,#0

mov r6,#0

mov r7,#0

mov r8,#0

ldr r9,=0x4000000 ;64MB

ldr r0,=0x30000000

0

stmia r0!,{r1-r8}

subs r9,r9,#32

bne %B0
;Clear SDRAM End
1
;Initialize stacks

bl InitStacks
;===========================================================

;bl Led_Test

ldr r0, =BWSCON

ldr r0, [r0]

ands r0, r0, #6 ;OM[1:0] != 0, NOR FLash boot

bne copy_proc_beg ;do not read nand flash

adr r0, ResetEntry ;OM[1:0] == 0, NAND FLash boot

cmp r0, #0 ;if use Multi-ice,

bne copy_proc_beg ;do not read nand flash for boot

;nop

;===========================================================

nand_boot_beg

mov r5, #NFCONF

;set timing value

ldr r0, =(7<<12)|(7<<8)|(7<<4)

str r0, [r5]

;enable control

ldr r0, =(0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0)

str r0, [r5, #4]

bl ReadNandID

mov r6, #0

ldr r0, =0xec73

cmp r5, r0

beq %F1

ldr r0, =0xec75

cmp r5, r0

beq %F1

mov r6, #1

1

bl ReadNandStatus

mov r8, #0

ldr r9, =ResetEntry

2

ands r0, r8, #0x1f

bne %F3

mov r0, r8

bl CheckBadBlk

cmp r0, #0

addne r8, r8, #32

bne %F4

3

mov r0, r8

mov r1, r9

bl ReadNandPage

add r9, r9, #512

add r8, r8, #1

4

cmp r8, #256

bcc %B2

mov r5, #NFCONF ;DsNandFlash

ldr r0, [r5, #4]

bic r0, r0, #1

str r0, [r5, #4]

ldr pc, =copy_proc_beg

;===========================================================

copy_proc_beg

adr r0, ResetEntry

ldr r2, BaseOfROM

cmp r0, r2

ldreq r0, TopOfROM

beq InitRam

ldr r3, TopOfROM

0

ldmia r0!, {r4-r7}

stmia r2!, {r4-r7}

cmp r2, r3

bcc %B0

sub r2, r2, r3

sub r0, r0, r2

InitRam

ldr r2, BaseOfBSS

ldr r3, BaseOfZero

0

cmp r2, r3

ldrcc r1, [r0], #4

strcc r1, [r2], #4

bcc %B0
mov r0, #0

ldr r3, EndOfBSS

1

cmp r2, r3

strcc r0, [r2], #4

bcc %B1

ldr pc, =%F2 ;goto compiler address

;跳转到2 的地址么

2

; [ CLKDIV_VAL>1 ; means Fclk:Hclk is not 1:1.

; bl MMU_SetAsyncBusMode

; |

; bl MMU_SetFastBusMode ; default value.

; ]

;bl Led_Test
;===========================================================

; Setup IRQ handler

ldr r0,=HandleIRQ ;This routine is needed

ldr r1,=IsrIRQ ;if there is not 'subs pc,lr,#4' at 0x18, 0x1c

str r1,[r0]
; ;Copy and paste RW data/zero initialized data

; ldr r0, =|Image$$RO$$Limit| ; Get pointer to ROM data

; ldr r1, =|Image$$RW$$Base| ; and RAM copy

; ldr r3, =|Image$$ZI$$Base|

;

; ;Zero init base => top of initialised data

; cmp r0, r1 ; Check that they are different

; beq %F2

;1

; cmp r1, r3 ; Copy init data

; ldrcc r2, [r0], #4 ;--> LDRCC r2, [r0] + ADD r0, r0, #4

; strcc r2, [r1], #4 ;--> STRCC r2, [r1] + ADD r1, r1, #4

; bcc %B1

;2

; ldr r1, =|Image$$ZI$$Limit| ; Top of zero init segment

; mov r2, #0

;3

; cmp r3, r1 ; Zero init

; strcc r2, [r3], #4

; bcc %B3

[ :LNOT:THUMBCODE

bl main ;Do not use main() because ......

;ldr pc, =main ;hzh

b .

]
[ THUMBCODE ;for start-up code for Thumb mode

orr lr,pc,#1

bx lr

CODE16

bl main ;Do not use main() because ......

b .

CODE32

]

;function initializing stacks

InitStacks

;Do not use DRAM,such as stmfd,ldmfd......

;SVCstack is initialized before

;Under toolkit ver 2.5, 'msr cpsr,r1' can be used instead of 'msr cpsr_cxsf,r1'

mrs r0,cpsr

bic r0,r0,#MODEMASK

orr r1,r0,#UNDEFMODE|NOINT

msr cpsr_cxsf,r1 ;UndefMode

ldr sp,=UndefStack ; UndefStack=0x33FF_5C00
orr r1,r0,#ABORTMODE|NOINT

msr cpsr_cxsf,r1 ;AbortMode

ldr sp,=AbortStack ; AbortStack=0x33FF_6000
orr r1,r0,#IRQMODE|NOINT

msr cpsr_cxsf,r1 ;IRQMode

ldr sp,=IRQStack ; IRQStack=0x33FF_7000
orr r1,r0,#FIQMODE|NOINT

msr cpsr_cxsf,r1 ;FIQMode

ldr sp,=FIQStack ; FIQStack=0x33FF_8000
bic r0,r0,#MODEMASK|NOINT

orr r1,r0,#SVCMODE

msr cpsr_cxsf,r1 ;SVCMode

ldr sp,=SVCStack ; SVCStack=0x33FF_5800
;USER mode has not be initialized.
mov pc,lr

;The LR register will not be valid if the current mode is not SVC mode.

;===========================================================

ReadNandID

mov r7,#NFCONF

ldr r0,[r7,#4] ;NFChipEn();

bic r0,r0,#2

str r0,[r7,#4]

mov r0,#0x90 ;WrNFCmd(RdIDCMD);

strb r0,[r7,#8]

mov r4,#0 ;WrNFAddr(0);

strb r4,[r7,#0xc]

1 ;while(NFIsBusy());

ldr r0,[r7,#0x20]

tst r0,#1

beq %B1

ldrb r0,[r7,#0x10] ;id = RdNFDat()<<8;

mov r0,r0,lsl #8

ldrb r1,[r7,#0x10] ;id |= RdNFDat();

orr r5,r1,r0

ldr r0,[r7,#4] ;NFChipDs();

orr r0,r0,#2

str r0,[r7,#4]

mov pc,lr

ReadNandStatus

mov r7,#NFCONF

ldr r0,[r7,#4] ;NFChipEn();

bic r0,r0,#2

str r0,[r7,#4]

mov r0,#0x70 ;WrNFCmd(QUERYCMD);

strb r0,[r7,#8]

ldrb r1,[r7,#0x10] ;r1 = RdNFDat();

ldr r0,[r7,#4] ;NFChipDs();

orr r0,r0,#2

str r0,[r7,#4]

mov pc,lr
WaitNandBusy

mov r0,#0x70 ;WrNFCmd(QUERYCMD);

mov r1,#NFCONF

strb r0,[r1,#8]

1 ;while(!(RdNFDat()&0x40));

ldrb r0,[r1,#0x10]

tst r0,#0x40

beq %B1

mov r0,#0 ;WrNFCmd(READCMD0);

strb r0,[r1,#8]

mov pc,lr
CheckBadBlk

mov r7, lr

mov r5, #NFCONF

bic r0,r0,#0x1f ;addr &= ~0x1f;

ldr r1,[r5,#4] ;NFChipEn()

bic r1,r1,#2

str r1,[r5,#4]
mov r1,#0x50 ;WrNFCmd(READCMD2)

strb r1,[r5,#8]

mov r1, #5;6 ;6->5

strb r1,[r5,#0xc] ;WrNFAddr(5);(6) 6->5

strb r0,[r5,#0xc] ;WrNFAddr(addr)

mov r1,r0,lsr #8 ;WrNFAddr(addr>>8)

strb r1,[r5,#0xc]

cmp r6,#0 ;if(NandAddr)

movne r0,r0,lsr #16 ;WrNFAddr(addr>>16)

strneb r0,[r5,#0xc]

; bl WaitNandBusy ;WaitNFBusy()

;do not use WaitNandBusy, after WaitNandBusy will read part A!

mov r0, #100

1

subs r0, r0, #1

bne %B1

2

ldr r0, [r5, #0x20]

tst r0, #1

beq %B2
ldrb r0, [r5,#0x10] ;RdNFDat()

sub r0, r0, #0xff

mov r1,#0 ;WrNFCmd(READCMD0)

strb r1,[r5,#8]

ldr r1,[r5,#4] ;NFChipDs()

orr r1,r1,#2

str r1,[r5,#4]

mov pc, r7

ReadNandPage

mov r7,lr

mov r4,r1

mov r5,#NFCONF
ldr r1,[r5,#4] ;NFChipEn()

bic r1,r1,#2

str r1,[r5,#4]
mov r1,#0 ;WrNFCmd(READCMD0)

strb r1,[r5,#8]

strb r1,[r5,#0xc] ;WrNFAddr(0)

strb r0,[r5,#0xc] ;WrNFAddr(addr)

mov r1,r0,lsr #8 ;WrNFAddr(addr>>8)

strb r1,[r5,#0xc]

cmp r6,#0 ;if(NandAddr)

movne r0,r0,lsr #16 ;WrNFAddr(addr>>16)

strneb r0,[r5,#0xc]

ldr r0,[r5,#4] ;InitEcc()

orr r0,r0,#0x10

str r0,[r5,#4]

bl WaitNandBusy ;WaitNFBusy()

mov r0,#0 ;for(i=0; i<512; i++)

1

ldrb r1,[r5,#0x10] ;buf[i] = RdNFDat()

strb r1,[r4,r0]

add r0,r0,#1

bic r0,r0,#0x10000

cmp r0,#0x200

bcc %B1

ldr r0,[r5,#4] ;NFChipDs()

orr r0,r0,#2

str r0,[r5,#4]

mov pc,r7
;--------------------LED test

EXPORT Led_Test

Led_Test

mov r0, #0x56000000

mov r1, #0x5500

str r1, [r0, #0x50]

0

mov r1, #0x50

str r1, [r0, #0x54]

mov r2, #0x100000

1

subs r2, r2, #1

bne %B1

mov r1, #0xa0

str r1, [r0, #0x54]

mov r2, #0x100000

2

subs r2, r2, #1

bne %B2

b %B0

mov pc, lr
;===========================================================
LTORG
;GCS0->SST39VF1601

;GCS1->16c550

;GCS2->IDE

;GCS3->CS8900

;GCS4->DM9000

;GCS5->CF Card

;GCS6->SDRAM

;GCS7->unused
SMRDATA DATA

; Memory configuration should be optimized for best performance

; The following parameter is not optimized.

; Memory access cycle parameter strategy

; 1) The memory settings is safe parameters even at HCLK=75Mhz.

; 2) SDRAM refresh period is for HCLK<=75Mhz.
DCD (0+(B1_BWSCON<<4)+(B2_BWSCON<<8)+(B3_BWSCON<<12)+(B4_BWSCON<<16)+(B5_BWSCON<<20)+(B6_BWSCON<<24)+(B7_BWSCON<<28))

DCD ((B0_Tacs<<13)+(B0_Tcos<<11)+(B0_Tacc<<8)+(B0_Tcoh<<6)+(B0_Tah<<4)+(B0_Tacp<<2)+(B0_PMC)) ;GCS0

DCD ((B1_Tacs<<13)+(B1_Tcos<<11)+(B1_Tacc<<8)+(B1_Tcoh<<6)+(B1_Tah<<4)+(B1_Tacp<<2)+(B1_PMC)) ;GCS1

DCD ((B2_Tacs<<13)+(B2_Tcos<<11)+(B2_Tacc<<8)+(B2_Tcoh<<6)+(B2_Tah<<4)+(B2_Tacp<<2)+(B2_PMC)) ;GCS2

DCD ((B3_Tacs<<13)+(B3_Tcos<<11)+(B3_Tacc<<8)+(B3_Tcoh<<6)+(B3_Tah<<4)+(B3_Tacp<<2)+(B3_PMC)) ;GCS3

DCD ((B4_Tacs<<13)+(B4_Tcos<<11)+(B4_Tacc<<8)+(B4_Tcoh<<6)+(B4_Tah<<4)+(B4_Tacp<<2)+(B4_PMC)) ;GCS4

DCD ((B5_Tacs<<13)+(B5_Tcos<<11)+(B5_Tacc<<8)+(B5_Tcoh<<6)+(B5_Tah<<4)+(B5_Tacp<<2)+(B5_PMC)) ;GCS5

DCD ((B6_MT<<15)+(B6_Trcd<<2)+(B6_SCAN)) ;GCS6

DCD ((B7_MT<<15)+(B7_Trcd<<2)+(B7_SCAN)) ;GCS7

DCD ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Tsrc<<18)+(Tchr<<16)+REFCNT)
DCD 0x32 ;SCLK power saving mode, BANKSIZE 128M/128M
DCD 0x30 ;MRSR6 CL=3clk

DCD 0x30 ;MRSR7 CL=3clk

BaseOfROM DCD |Image$$RO$$Base|

TopOfROM DCD |Image$$RO$$Limit|

BaseOfBSS DCD |Image$$RW$$Base|

BaseOfZero DCD |Image$$ZI$$Base|

EndOfBSS DCD |Image$$ZI$$Limit|
ALIGN

;Function for entering power down mode

; 1. SDRAM should be in self-refresh mode.

; 2. All interrupt should be maksked for SDRAM/DRAM self-refresh.

; 3. LCD controller should be disabled for SDRAM/DRAM self-refresh.

; 4. The I-cache may have to be turned on.

; 5. The location of the following code may have not to be changed.
;void EnterPWDN(int CLKCON);

EnterPWDN

mov r2,r0 ;r2=rCLKCON

tst r0,#0x8 ;SLEEP mode?

bne ENTER_SLEEP
ENTER_STOP

ldr r0,=REFRESH

ldr r3,[r0] ;r3=rREFRESH

mov r1, r3

orr r1, r1, #BIT_SELFREFRESH

str r1, [r0] ;Enable SDRAM self-refresh
mov r1,#16 ;wait until self-refresh is issued. may not be needed.

0 subs r1,r1,#1

bne %B0
ldr r0,=CLKCON ;enter STOP mode.

str r2,[r0]
mov r1,#32

0 subs r1,r1,#1 ;1) wait until the STOP mode is in effect.

bne %B0 ;2) Or wait here until the CPU&Peripherals will be turned-off

; Entering SLEEP mode, only the reset by wake-up is available.
ldr r0,=REFRESH ;exit from SDRAM self refresh mode.

str r3,[r0]
MOV_PC_LR
ENTER_SLEEP

;NOTE.

;1) rGSTATUS3 should have the return address after wake-up from SLEEP mode.
ldr r0,=REFRESH

ldr r1,[r0] ;r1=rREFRESH

orr r1, r1, #BIT_SELFREFRESH

str r1, [r0] ;Enable SDRAM self-refresh
mov r1,#16 ;Wait until self-refresh is issued,which may not be needed.

0 subs r1,r1,#1

bne %B0
ldr r1,=MISCCR

ldr r0,[r1]

orr r0,r0,#(7<<17) ;Set SCLK0=0, SCLK1=0, SCKE=0.

str r0,[r1]
ldr r0,=CLKCON ; Enter sleep mode

str r2,[r0]
b . ;CPU will die here.

WAKEUP_SLEEP

;Release SCLKn after wake-up from the SLEEP mode.

ldr r1,=MISCCR

ldr r0,[r1]

bic r0,r0,#(7<<17) ;SCLK0:0->SCLK, SCLK1:0->SCLK, SCKE:0->=SCKE.

str r0,[r1]
;Set memory control registers

ldr r0,=SMRDATA ;be careful!, hzh

ldr r1,=BWSCON ;BWSCON Address

add r2, r0, #52 ;End address of SMRDATA

0

ldr r3, [r0], #4

str r3, [r1], #4

cmp r2, r0

bne %B0
mov r1,#256

0 subs r1,r1,#1 ;1) wait until the SelfRefresh is released.

bne %B0
ldr r1,=GSTATUS3 ;GSTATUS3 has the start address just after SLEEP wake-up

ldr r0,[r1]
mov pc,r0

;=====================================================================

; Clock division test

; Assemble code, because VSYNC time is very short

;=====================================================================

EXPORT CLKDIV124

EXPORT CLKDIV144

CLKDIV124

ldr r0, = CLKDIVN

ldr r1, = 0x3 ; 0x3 = 1:2:4

str r1, [r0]

; wait until clock is stable

nop

nop

nop

nop

nop
ldr r0, = REFRESH

ldr r1, [r0]

bic r1, r1, #0xff

bic r1, r1, #(0x7<<8)

orr r1, r1, #0x470 ; REFCNT135

str r1, [r0]

nop

nop

nop

nop

nop

mov pc, lr
CLKDIV144

ldr r0, = CLKDIVN

ldr r1, = 0x4 ; 0x4 = 1:4:4

str r1, [r0]

; wait until clock is stable

nop

nop

nop

nop

nop
ldr r0, = REFRESH

ldr r1, [r0]

bic r1, r1, #0xff

bic r1, r1, #(0x7<<8)

orr r1, r1, #0x630 ; REFCNT675 - 1520

str r1, [r0]

nop

nop

nop

nop

nop

mov pc, lr
ALIGN
;==========================================================================================================================================

;一般中断处理程序的存储结构

;分为3个区域

; 1,异常向量表(_IRQ_BASEADDRESS ~ _IRQ_BASEADDRESS+0x4*8)

; 本段无 2,none vector mode的判断程序(_IRQ_BASEADDRESS+0x80~...)

; 3,isr表(中断处理服务表)(_IRQ_BASEADDRESS+0x100~...)

; 无 最后还有堆栈区域
AREA RamData, DATA, READWRITE
^ _ISR_STARTADDRESS ; _ISR_STARTADDRESS=0x33FF_FF00

HandleReset # 4

HandleUndef # 4

HandleSWI # 4

HandlePabort # 4

HandleDabort # 4

HandleReserved # 4

HandleIRQ # 4

HandleFIQ # 4
;Do not use the label 'IntVectorTable',

;The value of IntVectorTable is different with the address you think it may be.

;IntVectorTable

;@0x33FF_FF20

HandleEINT0 # 4

HandleEINT1 # 4

HandleEINT2 # 4

HandleEINT3 # 4

HandleEINT4_7 # 4

HandleEINT8_23 # 4

HandleCAM # 4 ; Added for 2440.

HandleBATFLT # 4

HandleTICK # 4

HandleWDT # 4

HandleTIMER0 # 4

HandleTIMER1 # 4

HandleTIMER2 # 4

HandleTIMER3 # 4

HandleTIMER4 # 4

HandleUART2 # 4

;@0x33FF_FF60

HandleLCD # 4

HandleDMA0 # 4

HandleDMA1 # 4

HandleDMA2 # 4

HandleDMA3 # 4

HandleMMC # 4

HandleSPI0 # 4

HandleUART1 # 4

HandleNFCON # 4 ; Added for 2440.

HandleUSBD # 4

HandleUSBH # 4

HandleIIC # 4

HandleUART0 # 4

HandleSPI1 # 4

HandleRTC # 4

HandleADC # 4

;@0x33FF_FFA0
;dai

; User Initial Stack & Heap

;without this the error is Error: L6915E: Library reports error: scatter-load file declares no heap or stack regions and __user_initial_stackheap is not defined

AREA |.text|, CODE, READONLY
IMPORT __use_two_region_memory

EXPORT __user_initial_stackheap

EXPORT Stack_Mem

__user_initial_stackheap
LDR R0, = Heap_Mem

LDR R1, =(Stack_Mem + USR_Stack_Size)

LDR R2, = (Heap_Mem + Heap_Size)

LDR R3, = Stack_Mem

BX LR

END

2, 加载描述文件LJD2440TESTRAM.sct

; *************************************************************

; *** Scatter-Loading Description File generated by uVision ***

; *************************************************************

;dai, 2008.07.25 hongjun.dai@gmail.com

LR_IROM1 0x30200000 0x0FFFFFFF { ; load region size_region

;LR_IROM1 0x00000000 0x0FFFFFFF { ; load region size_region

RO +0 { ; load address = execution address

*.o (RESET, +First)

*(InRoot$$Sections)

.ANY (+RO)

}

RW +0 { ; RW data

.ANY (+RW +ZI)

}

ZI +0 { ; ZI data

.ANY (+ZI)

}

}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: