您的位置:首页 > 其它

高斯消元

2013-06-21 22:01 417 查看
今天开始看高斯消元。高斯消元个人通过最近的一系列联系越发感到它的重要性。废话不多说,接下来就讲一下高斯消元。

其实高斯消元这个东西并不困难,只要搞懂了它的原理,即使自己独立也可以写出来。

首先推荐http://blog.163.com/baobao_zhang@126/blog/static/4825236720099202538409/,个人感觉他讲的挺好懂的。在讲高斯消元之前首先要明白线性代数,其实高斯消元就是用行列式对方程组进行一个简化以便于处理求解。

在这里有于篇幅和个人能力的限制,就不介绍行列式了,具体的在网上都可以找到,并不是很难。当你掌握了行列式的一些基本知识后就会发现,对于两个通过行列变换得到的行列式所代表的方程组,其解值都是相同的。明白这个性质很重要,因为高斯消元的核心就是把原行列式转化为行阶梯式求解。

掌握了行列式的知识和高斯消元的大致原理后,它的解题步骤也就不难想到:

(我们设方程组中方程的个数为equ,变元的个数为var,注意:一般情况下是n个方程,n个变元,但是有些题目就故意让方程数与变元数不同)

1. 把方程组转换成增广矩阵。

2. 利用初等行变换来把增广矩阵转换成行阶梯阵。枚举k从0到equ – 1,当前处理的列为col(初始为0) ,每次找第k行以下(包括第k行),col列中元素绝对值最大的列与第k行交换。如果col列中的元素全为0,那么则处理col + 1列,k不变。

3. 转换为行阶梯阵,判断解的情况。

① 无解
当方程中出现(0, 0, …, 0, a)的形式,且a != 0时,说明是无解的。

② 唯一解
条件是k = equ,即行阶梯阵形成了严格的上三角阵。利用回代逐一求出解集。

③ 无穷解。
条件是k < equ,即不能形成严格的上三角形,自由变元的个数即为equ – k,但有些题目要求判断哪些变元是不缺定的。

这里单独介绍下这种解法:
首先,自由变元有var - k个,即不确定的变元至少有var - k个。我们先把所有的变元视为不确定的。在每个方程中判断不确定变元的个数,如果大于1个,则该方程无法求解。如果只有1个变元,那么该变元即可求出,即为确定变元。
以上介绍的是求解整数线性方程组的求法,复杂度是O(n3)。浮点数线性方程组的求法类似,但是要在判断是否为0时,加入EPS,以消除精度问题。

贴几个模板:

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;

const int MAXN=50;

int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元

/*
void Debug(void)
{
int i, j;
for (i = 0; i < equ; i++)
{
for (j = 0; j < var + 1; j++)
{
cout << a[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
*/

inline int gcd(int a,int b)
{
int t;
while(b!=0)
{
t=b;
b=a%b;
a=t;
}
return a;
}
inline int lcm(int a,int b)
{
return a/gcd(a,b)*b;//先除后乘防溢出
}

// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var)
{
int i,j,k;
int max_r;// 当前这列绝对值最大的行.
int col;//当前处理的列
int ta,tb;
int LCM;
int temp;
int free_x_num;
int free_index;

for(int i=0;i<=var;i++)
{
x[i]=0;
free_x[i]=true;
}

//转换为阶梯阵.
col=0; // 当前处理的列
for(k = 0;k < equ && col < var;k++,col++)
{// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
max_r=k;
for(i=k+1;i<equ;i++)
{
if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
}
if(max_r!=k)
{// 与第k行交换.
for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
}
if(a[k][col]==0)
{// 说明该col列第k行以下全是0了,则处理当前行的下一列.
k--;
continue;
}
for(i=k+1;i<equ;i++)
{// 枚举要删去的行.
if(a[i][col]!=0)
{
LCM = lcm(abs(a[i][col]),abs(a[k][col]));
ta = LCM/abs(a[i][col]);
tb = LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
for(j=col;j<var+1;j++)
{
a[i][j] = a[i][j]*ta-a[k][j]*tb;
}
}
}
}

//  Debug();

// 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
for (i = k; i < equ; i++)
{ // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
if (a[i][col] != 0) return -1;
}
// 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
// 且出现的行数即为自由变元的个数.
if (k < var)
{
// 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
for (i = k - 1; i >= 0; i--)
{
// 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
// 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
for (j = 0; j < var; j++)
{
if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
}
if (free_x_num > 1) continue; // 无法求解出确定的变元.
// 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
temp = a[i][var];
for (j = 0; j < var; j++)
{
if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
}
x[free_index] = temp / a[i][free_index]; // 求出该变元.
free_x[free_index] = 0; // 该变元是确定的.
}
return var - k; // 自由变元有var - k个.
}
// 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
// 计算出Xn-1, Xn-2 ... X0.
for (i = var - 1; i >= 0; i--)
{
temp = a[i][var];
for (j = i + 1; j < var; j++)
{
if (a[i][j] != 0) temp -= a[i][j] * x[j];
}
if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
x[i] = temp / a[i][i];
}
return 0;
}
int main(void)
{
freopen("in.txt", "r", stdin);
freopen("out.txt","w",stdout);
int i, j;
int equ,var;
while (scanf("%d %d", &equ, &var) != EOF)
{
memset(a, 0, sizeof(a));
for (i = 0; i < equ; i++)
{
for (j = 0; j < var + 1; j++)
{
scanf("%d", &a[i][j]);
}
}
//        Debug();
int free
aa7b
_num = Gauss(equ,var);
if (free_num == -1) printf("无解!\n");
else if (free_num == -2) printf("有浮点数解,无整数解!\n");
else if (free_num > 0)
{
printf("无穷多解! 自由变元个数为%d\n", free_num);
for (i = 0; i < var; i++)
{
if (free_x[i]) printf("x%d 是不确定的\n", i + 1);
else printf("x%d: %d\n", i + 1, x[i]);
}
}
else
{
for (i = 0; i < var; i++)
{
printf("x%d: %d\n", i + 1, x[i]);
}
}
printf("\n");
}
return 0;
}
接下来的两个代码中,matrix数组表示等号左边的值,ans数组表示等号右边的值,最终的解是ans数组
/*
无特殊情况高斯消元 并且答案乱记
高斯消元从来没有好好写过
今天来尝试一下
Debug:No
*/

typedef double matrix[50][50];

void reduce(matrix a,double ans[],int n)
{
int t;double p;
for(int i=0;i<n;i++)
{
t=i;
for(int j=i;j<n;j++)
if(fabs(a[j][i])>fabs(a[t][i]))t=j;
for(int j=i;j<n;j++)
{
p=a[i][j];a[i][j]=a[t][j];a[t][j]=p;
}
p=ans[i];ans[i]=ans[t];ans[t]=p;
for(int j=i+1;j<n;j++)
{
p=a[j][i]/a[i][i];
for(int k=i;k<n;k++)a[j][k]-=p*a[i][k];
ans[j]-=p*ans[i];
}
}
for(int i=n-1;i>=0;i--)
for(int j=n;j>i;j--)ans[i]-=ans[j]*a[i][j];
}
/*
无特殊情况高斯消元xor版 并且答案乱记
xor的比较好写吧
Debug:No
*/

typedef int matrix[50][50];

void reduce(matrix a,int ans[],int n)
{
int t,p;
for(int i=0;i<n;i++)
{
t=i;
for(int j=i;j<n;j++)
if(a[i][j])t=j;
for(int j=i;j<n;j++)
{
p=a[i][j];a[i][j]=a[t][j];a[t][j]=p;
}
p=ans[i];ans[i]=ans[t];ans[t]=p;
for(int j=i+1;j<n;j++)
{
if(a[j][i])
for(int k=i;k<n;k++)a[j][k]^=a[i][k];
ans[j]^=ans[i];
}
}
for(int i=n-1;i>=0;i--)
for(int j=n;j>i;j--)ans[i]^=(ans[j]^a[i][j]);
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  算法 高斯消元