您的位置:首页 > 其它

K Nearest Neighbor问题的解决——KD-TREE Implementation

2013-05-30 19:49 260 查看
命题一:

已知的1000个整数的数组,给定一个整数,要求查证是否在数组中出现?

命题二:

已知1000个整数的数组,给定一个整数,要求查找数组中与之最接近的数字?

命题三:

已知1000个Point(包含X与Y坐标)结构的数组,给定一个Point,要求查找数组中与之最接近(比如:欧氏距离最短)的点。

命题四:

已知1,000,000个向量,每个向量为128维;给定一个向量,要求查找数组中与之最接近的K个向量

对于命题一,如果不考虑桶式、哈希等方式,常用的方法应该是排序后,使用折半查找。
对于命题二,与命题一类似,比较折半查找得出的结果,以及附近的各一个元素,即可。整个过程相当于是把这个包含1000个数组的数据结构做成一颗二叉树,最后只需比较叶子节点与其父节点即可。
对于命题三、四其中命题三和四就是所谓的Nearest Neighbor问题。一种近似解决的方法就是KD-TREE

高维向量的KNN检索问题,在图像等多媒体内容搜索中是相当关键的。关于高维向量的讨论,网上资料比较少;在此,我将一些心得分享给大家。

与二叉树相比,KD-TREE也采用类似的划分方式,只不过树中的各节点均是高维向量,因此划分的方式,采用随机或指定的方式选取一个维度,在该指定维度上进行划分;整体的思想就是采用多个超平面对数据集空间进行两两切分,这一点,有点类似于数据挖掘中的决策树。

一个运用KD-TREE分割二维平面的DEMO如下:



KD-Tree build的代码如下:

Java代码


private ClusterKDTree(Clusterable[] points, int height, boolean randomSplit){

if ( points.length == 1 ){

cluster = points[0];

}

else {

splitIndex = chooseSplitDimension//选取切分维度

(points[0].getLocation().length,height,randomSplit);

splitValue = chooseSplit(points,splitIndex);//选取切分值

Vector<Clusterable> left = new Vector<Clusterable>();

Vector<Clusterable> right = new Vector<Clusterable>();

for ( int i = 0; i < points.length; i++ ){

double val = points[i].getLocation()[splitIndex];

if ( val == splitValue && cluster == null ){

cluster = points[i];

}

else if ( val >= splitValue ){

right.add(points[i]);

} else {

left.add(points[i]);

}

}

if ( right.size() > 0 ){

this.right = new ClusterKDTree(right.toArray(new

Clusterable[right.size()]),

randomSplit ? splitIndex : height+1, randomSplit);

}

if ( left.size() > 0 ){

this.left = new ClusterKDTree(left.toArray(new

Clusterable[left.size()]),randomSplit ? splitIndex : height+1,

randomSplit);

}

}

}

private int chooseSplitDimension(int dimensionality,int height,boolean random){

if ( !random ) return height % dimensionality;

int rand = r.nextInt(dimensionality);

while ( rand == height ){

rand = r.nextInt(dimensionality);

}

return rand;

}

private double chooseSplit(Clusterable points[],int splitIdx){

double[] values = new double[points.length];

for ( int i = 0; i < points.length; i++ ){

values[i] = points[i].getLocation()[splitIdx];

}

Arrays.sort(values);

return values[values.length/2];//选取中间值以保持树的平衡

}

构建完一颗KD-TREE之后,如何使用它来做KNN检索呢?我用下面的图来表示(20s的GIF动画):



使用KD-TREE,经过一次二分查找可以获得Query的KNN(最近邻)贪心解,代码如下:

Java代码


private Clusterable restrictedNearestNeighbor(Clusterable point, SizedPriorityQueue<ClusterKDTree> values){

if ( splitIndex == -1 ) {

return cluster; //已近到叶子节点

}

double val = point.getLocation()[splitIndex];

Clusterable closest = null;

if ( val >= splitValue && right != null || left == null ){

//沿右边路径遍历,并将左边子树放进队列

if ( left != null ){

double dist = val - splitValue;

values.add(left,dist);

}

closest = right.restrictedNearestNeighbor(point,values);

}

else if ( val < splitValue && left != null || right == null ) {

//沿左边路径遍历,并将右边子树放进队列

if ( right != null ){

double dist = splitValue - val;

values.add(right,dist);

}

closest = left.restrictedNearestNeighbor(point,values);

}

//current distance of the 'ideal' node

double currMinDistance = ClusterUtils.getEuclideanDistance(closest,point);

//check to see if the current node we've backtracked to is closer

double currClusterDistance = ClusterUtils.getEuclideanDistance(cluster,point);

if ( closest == null || currMinDistance > currClusterDistance ){

closest = cluster;

currMinDistance = currClusterDistance;

}

return closest;

}

事实上,仅仅一次的遍历会有不小的误差,因此采用了一个优先级队列来存放每次决定遍历走向时,另一方向的节点。SizedPriorityQueue代码的实现,可参考我的另一篇文章:

http://grunt1223.iteye.com/blog/909739

一种减少误差的方法(BBF:Best Bin First)是回溯一定数量的节点:

Java代码


public Clusterable restrictedNearestNeighbor(Clusterable point, int numMaxBinsChecked){

SizedPriorityQueue<ClusterKDTree> bins = new SizedPriorityQueue<ClusterKDTree>(50,true);

Clusterable closest = restrictedNearestNeighbor(point,bins);

double closestDist = ClusterUtils.getEuclideanDistance(point,closest);

//System.out.println("retrieved point: " + closest + ", dist: " + closestDist);

int count = 0;

while ( count < numMaxBinsChecked && bins.size() > 0 ){

ClusterKDTree nextBin = bins.pop();

//System.out.println("Popping of next bin: " + nextBin);

Clusterable possibleClosest = nextBin.restrictedNearestNeighbor(point,bins);

double dist = ClusterUtils.getEuclideanDistance(point,possibleClosest);

if ( dist < closestDist ){

closest = possibleClosest;

closestDist = dist;

}

count++;

}

return closest;

}

可以用如下代码进行测试:

Java代码


public static void main(String args[]){

Clusterable clusters[] = new Clusterable[10];

clusters[0] = new Point(0,0);

clusters[1] = new Point(1,2);

clusters[2] = new Point(2,3);

clusters[3] = new Point(1,5);

clusters[4] = new Point(2,5);

clusters[5] = new Point(1,1);

clusters[6] = new Point(3,3);

clusters[7] = new Point(0,2);

clusters[8] = new Point(4,4);

clusters[9] = new Point(5,5);

ClusterKDTree tree = new ClusterKDTree(clusters,true);

//tree.print();

Clusterable c = tree.restrictedNearestNeighbor(new Point(4,4),1000);

System.out.println(c);

}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: