您的位置:首页 > 其它

内存分配和EatMemory的思考

2013-04-14 12:03 288 查看
通过本文可以了解:

1、程序内存管理(WINDOWS操作系统,简要介绍,可参考网上其它文章),堆内存和栈内存分配策略

2、EatMemory不同策略的思考

I 程序内存管理

一个应用程序在内存中划分为几块区域,

代码段:存放硬盘执行文件(二进制指令)镜像的内存区域,系统保证其可读不可写;

数指段:分配用于存放全局变量和静态变量内存区域,大小固定不变;

堆:存放动态分配内存变量的内存区域,动态扩张或缩减,C中通过malloc和free接口管理其生命周期;

栈:存放临时变更的内存区域,同样动态扩张或缩减,但遵循FIFO原则;

示例:





上图为WIN7测试一个简单程序,各个区域分布,

// c_mem_test.cpp: 主项目文件。
/*
#include "stdafx.h"

using namespace System;

int main(array<System::String ^> ^args)
{
Console::WriteLine(L"Hello World");
return 0;
}
*/
#include "stdafx.h"
#include "stdlib.h"
#include "stdio.h"
using namespace System;
int bss_var;
int data_var0=1;
int main(int argc,char **argv)
{

printf("____________________________\n");
printf("Code Location:\n");
printf("\tAddress of main(Code Segment):%p\n",main);
printf("____________________________\n");
int stack_var0=2;
printf("Stack Location:\n");
printf("\tInitial end of main stack:%p\n",&stack_var0);
int stack_var1=3;
printf("\tnew end of main stack:%p\n",&stack_var1);

if(&stack_var1 - &stack_var0 > 0)
printf("\tstack increment:up->down\n");
else
printf("\tstack increment:down->up\n");

printf("____________________________\n");
printf("Data Location:\n");
printf("\tAddress of data_var(Data Segment):%p\n",&data_var0);
static int data_var1=4;
printf("\tNew end of data_var(Data Segment):%p\n",&data_var1);
printf("____________________________\n");
printf("BSS Location:\n");
printf("\tAddress of bss_var:%p\n",&bss_var);
printf("____________________________\n");
int *b =(int *)malloc(4);
int *a =(int *)malloc(4);
printf("Heap Location:\n");
printf("\tInitial start of heap:%p\n",b);
printf("\tInitial end of heap:%p\n",a);
if(a-b>0)
printf("\tHeap increment:up->down\n");
else
printf("\tHeap increment:down->up\n");

long distance = b - &stack_var1;

printf("the distance between stack and heap:%ld\n",&distance);

printf("____________________________\n");
printf("test heap increment dynamicly:\n");
printf("type length u want to apply(MB):");
int apply_heap_length=0;
scanf("%d",&apply_heap_length);

int apply_heap_count=apply_heap_length<<18;
int *c ;
int *pre = a;
for(int i=0;i<apply_heap_count;i++)
{
c = (int *)malloc(4);
/*
if(c-pre>0)
printf("\tup->down");
else
printf("\tdown->up");
*/

pre = c;

}
printf("\tAddress of main(Code Segment):%p\n",main);
printf("\tNew end of data_var(Data Segment):%p\n",&data_var1);
printf("\tnew end of main stack:%p\n",&stack_var1);

printf("\tstart of heap:%p\n",b);
printf("\tend of heap:%p\n",c);

printf("the distance between stack and heap:%ld\n",c-&stack_var1);

scanf("%d",b);

return 0;
}


由图可见,栈的增长策略即先进先出,而堆则不然(不规则,具体详见内核相关文章),访程序在初始时操作系统分配2MB内存,如果动态分配10MB的内存,那么实始的内存空间必然不够,此时,操作系统按堆增长要求(遵循一定策略)再划分一段内存区,最后可以看下程序的实际内存占用率对比如下:



分配前



分配10MB后



II EatMemory

在系统测试中经常要模拟内存占背景条件,网上提供EatMemory工具基本上都是提供简单的内存占用功能,即通过动态内存分配(heap)来构造内存占用的条件,提供按指定大下分配内存和按内存占用率分配内存的用户接口,后者需要定期检查系统内存占用率以决定要分配多少内存。

局限:EatMemory只是指供静态分配内存策略,无法模拟和覆盖实际内存交互和系统内存管理,但不失为一种构造内存条件的方法。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: