您的位置:首页 > 运维架构 > Linux

ARM-Linux——内核启动流程分析

2013-03-12 19:16 483 查看
原文参考:http://blog.csdn.net/ayangke/article/details/6888699

内核版本:2.6.22 为什么要采用这样一个较低的版本进行移植了,因为韦东山大牛说了,低版本的才能学到东西,越是高版本需要移植时做的工作量越少,学的东西越少。

内核启动分为三个阶段,第一是运行head.S文件和head-common.S,第三个阶段是允许第二是运行main.c文件

对于ARM的处理器,内核第一个启动的文件是arc/arm/kernel下面的head.S文件。当然arc/arm/boot/compress下面也有这个文件,这个文件和上面的文件略有不同,当要生成压缩的内核时zImage时,启动的是后者,后者与前者不同的时,它前面的代码是做自解压的,后面的代码都相同。我们这里这分析arc/arm/kernel下面的head.S文件。当head.S所作的工作完成后它会跳到init/目录下跌的main.c的start_kernel函数开始执行。

第一阶段:

首先截取部分head.S文件

ENTRY(stext)

msr cpsr_c,#PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode

@ andirqs disabled

mrc p15,0, r9, c0, c0 @ get processor id

bl __lookup_processor_type @ r5=procinfo r9=cpuid

movs r10,r5 @ invalidprocessor (r5=0)?

beq __error_p @ yes, error 'p'

bl __lookup_machine_type @ r5=machinfo

movs r8,r5 @ invalidmachine (r5=0)?

beq __error_a @ yes, error 'a'

bl __create_page_tables

/*

*The following calls CPU specific code in a position independent

*manner. See arch/arm/mm/proc-*.S fordetails. r10 = base of

*xxx_proc_info structure selected by __lookup_machine_type

*above. On return, the CPU will be readyfor the MMU to be

*turned on, and r0 will hold the CPU control register value.

*/

ldr r13,__switch_data @ address to jump toafter

@ mmuhas been enabled

adr lr,__enable_mmu @ return (PIC)address

第一步,执行的是__lookup_processor_type,这个函数是检查处理器型号,它读取你的电路板的CPU型号与内核支持的处理器进行比较看是否能够处理。这个我们不关心它的具体实现过程,因为现在主流处理器内核都提供了支持。

第二步,执行的是__lookup_machine_type,这个函数是来检查机器型号的,它会读取你bootloader传进来的机器ID和他能够处理的机器ID进行比较看是否能够处理。内核的ID号定义在arc/arm/tool/mach_types文件中MACH_TYPE_xxxx宏定义。内核究竟就如何检查是否是它支持的机器的呢?实际上每个机器都会在/arc/arm/mach-xxxx/smdk-xxxx.c文件中有个描述特定机器的数据结构,如下

[html] view
plaincopy

MACHINE_START(S3C2440,"SMDK2440")

/* Maintainer: Ben Dooks<ben@fluff.org> */

.phys_io =S3C2410_PA_UART,

.io_pg_offst = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,

.boot_params = S3C2410_SDRAM_PA + 0x100,

.init_irq =s3c24xx_init_irq,

.map_io =smdk2440_map_io,

.init_machine = smdk2440_machine_init,

.timer =&s3c24xx_timer,

MACHINE_END

MACHINE_START和 MACHINE_END实际上被展开成一个结构体

[html] view
plaincopy

#defineMACHINE_START(_type,_name) \

staticconst struct machine_desc __mach_desc_##_type \

__used \

__attribute__((__section__(".arch.info.init")))= { \

.nr =MACH_TYPE_##_type, \

.name =_name,

#defineMACHINE_END \

};

于是上面的数据结构就被展开为

[html] view
plaincopy

staticconst struct machine_desc __mach_desc_S3C2440 \

__used \

__attribute__((__section__(".arch.info.init")))= { \

.nr =MACH_TYPE_S3C2440, \

.name =”SMDK2440”,};

.phys_io = S3C2410_PA_UART,

.io_pg_offst = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,

.boot_params = S3C2410_SDRAM_PA + 0x100,

.init_irq =s3c24xx_init_irq,

.map_io =smdk2440_map_io,

.init_machine = smdk2440_machine_init,

.timer =&s3c24xx_timer,

}

每个机器都会有一个machine_desc__mach_desc结构,内核通过检查每个machine_desc__mach_desc的nr号和bootloader传上来的ID进行比较,如果相同,内核就认为支持该机器,而且内核在后面的工作中会调用该机器的machine_desc__mach_desc_结构中的方法进行一些初始化工作。

第三步,创建一级页表。

第四步,在R13中保存__switch_data 这个函数的地址,在第四步使能mmu完成后会跳到该函数执行。

第五步,执行的是__enable_mmu,它是使能MMU,这个函数调用了__turn_mmu_on函数,让后在_turn_mmu_on在最后将第三步赋给R13的值传给了PC指针 (mov pc, r13),于是内核开始跳到__switch_data这个函数开始执行。

我们再来看arch/arm/kenel/head-common.S这个文件中的__switch_data函数

[html] view
plaincopy

__switch_data:

.long __mmap_switched

.long __data_loc @ r4

.long __data_start @ r5

.long __bss_start @ r6

.long _end @ r7

.long processor_id @ r4

.long __machine_arch_type @ r5

.long cr_alignment @ r6

.long init_thread_union+ THREAD_START_SP @ sp

/*

* The following fragment of code is executedwith the MMU on in MMU mode,

* and uses absolute addresses; this is notposition independent.

*

* r0 =cp#15 control register

* r1 = machine ID

* r9 = processor ID

*/

.type __mmap_switched,%function

__mmap_switched:

adr r3,__switch_data + 4

ldmia r3!,{r4, r5, r6, r7}

cmp r4,r5 @ Copy datasegment if needed

1: cmpne r5,r6

ldrne fp,[r4], #4

strne fp,[r5], #4

bne 1b

mov fp,#0 @ Clear BSS(and zero fp)

1: cmp r6,r7

strcc fp,[r6],#4

bcc 1b

ldmia r3,{r4, r5, r6, sp}

str r9, [r4] @ Save processor ID

str r1, [r5] @ Save machine type

bic r4,r0, #CR_A @ Clear 'A' bit

stmia r6,{r0, r4} @ Save controlregister values

b start_kernel

这个函数做的工作是,复制数据段清楚BBS段,设置堆在指针,然后保存处理器内核和机器内核等工作,最后跳到start_kernel函数。于是内核开始执行第二阶段。

第二阶段:

我们再来看init/目录下的main.c的start_kernel函数,这里我只截图了部分。

[html] view
plaincopy

asmlinkage void __init start_kernel(void)

{

…………………….

……………………..

printk(KERN_NOTICE);

printk(linux_banner);

setup_arch(&command_line);

setup_command_line(command_line);

parse_early_param();

parse_args("Booting kernel",static_command_line, __start___param,

__stop___param - __start___param,

&unknown_bootoption);

……………………

…………………………

init_IRQ();

pidhash_init();

init_timers();

hrtimers_init();

softirq_init();

timekeeping_init();

time_init();

profile_init();

…………………………

……………………………

console_init();

………………………………

………………………………

rest_init();

}

从上面可以看出start_kernel首先是打印内核信息,然后对bootloader传进来的一些参数进行处理,再接着执行各种各样的初始化,在这其中会初始化控制台。最后会调用rest_init();

我们再来看rest_init()函数

[html] view
plaincopy

static void noinline __init_refok rest_init(void)

__releases(kernel_lock)

{

int pid;

kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);

............

}

他启动了kernel_init这个函数,再来看kerne_init函数

[html] view
plaincopy

static int __init kernel_init(void * unused)

{

..............................

if (!ramdisk_execute_command)

ramdisk_execute_command = "/init";

if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {

ramdisk_execute_command = NULL;

prepare_namespace();

}

/*

* Ok, we have completed the initial bootup, and

* we're essentially up and running. Get rid of the

* initmem segments and start the user-mode stuff..

*/

init_post();

return 0;

}

kernel_init先调用了prepare_namespace();然后调用了init_post函数

[html] view
plaincopy

void __init prepare_namespace(void)

{

..........................

mount_root();

.....................

}

可以看出prepare_namespace调用了mount_root挂接根文件系统。接着kernel_init再执行init_post

[html] view
plaincopy

static int noinline init_post(void)

{

.......................................

/*打开dev/console控制台,并设置为标准输入、输出*/

if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)

printk(KERN_WARNING "Warning: unable to open an initial console.\n");

(void) sys_dup(0);

(void) sys_dup(0);

if (ramdisk_execute_command) {

run_init_process(ramdisk_execute_command);

printk(KERN_WARNING "Failed to execute %s\n",

ramdisk_execute_command);

}

/*

* We try each of these until one succeeds.

*

* The Bourne shell can be used instead of init if we are

* trying to recover a really broken machine.

*/

//如果bootloader指定了init参数,则启动init参数指定的进程

if (execute_command) {

run_init_process(execute_command);

printk(KERN_WARNING "Failed to execute %s. Attempting "

"defaults...\n", execute_command);

}

//如果没有指定init参数,则分别带sbin、etc、bin目录下启动init进程

run_init_process("/sbin/init");

run_init_process("/etc/init");

run_init_process("/bin/init");

run_init_process("/bin/sh");

panic("No init found. Try passing init= option to kernel.");

}

注意上面的run_init_process的会等待init进程返回才往后面执行,所有它一旦找到一个init可执行的文件它将一去不复返。

综上,内核启动的过程大致为以下几步:

1.检查CPU和机器类型

2.进行堆栈、MMU等其他程序运行关键的东西进行初始化

3.打印内核信息

4.执行各种模块的初始化

5.挂接根文件系统

6.启动第一个init进程
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: