您的位置:首页 > 运维架构 > Linux

Linux内核I2C子系统驱动(二)

2012-11-27 08:59 435 查看
上一篇文章讲述了I2C子系统体系结构,总线驱动、设备驱动的知识点,下面就S3C2440 I2C总线驱动的实现详细讲解,它的源码位于drivers/i2c/busses/i2c-s3c2410.c

一、I2C平台设备资源

IIC驱动中使用的平台设备与前面看门狗、rtc等方式原理相同,但定义路径有所不同,并且设置了额外一些参数。mach_smdk2440.c文件中smdk2440_machine_init函数初始化了平台设备,还对s3c_device_i2c0平台设备进行额外的设置(s3c_i2c0_set_platdata),s3c_device_i2c0平台设备定义在arch/arm/plat-s3c/dev-i2c0.c。

static void __init smdk2440_machine_init(void)

{

s3c24xx_fb_set_platdata(&smdk2440_fb_info);

s3c_i2c0_set_platdata(NULL);

platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));

smdk_machine_init();

}

下面是s3c_device_i2c0平台设备相关部分,s3c_i2c0_set_platdata初始化s3c_device_i2c0.dev.platform_data为default_i2c_data0

static struct resource s3c_i2c_resource[] = {

[0] = {

.start = S3C_PA_IIC,

.end = S3C_PA_IIC + SZ_4K - 1,

.flags = IORESOURCE_MEM,

},

[1] = {

.start = IRQ_IIC,

.end = IRQ_IIC,

.flags = IORESOURCE_IRQ,

},

};

struct platform_device s3c_device_i2c0 = {

.name = "s3c2410-i2c",

#ifdef CONFIG_S3C_DEV_I2C1

.id = 0,

#else

.id = -1,

#endif

.num_resources = ARRAY_SIZE(s3c_i2c_resource),

.resource = s3c_i2c_resource,

};

static struct s3c2410_platform_i2c default_i2c_data0 __initdata = {

.flags = 0,

.slave_addr = 0x10,

.frequency = 100*1000,

.sda_delay = 100,

};

void __init s3c_i2c0_set_platdata(struct s3c2410_platform_i2c *pd)

{

struct s3c2410_platform_i2c *npd;

if (!pd)

pd = &default_i2c_data0;

npd = kmemdup(pd, sizeof(struct s3c2410_platform_i2c), GFP_KERNEL);

if (!npd)

printk(KERN_ERR "%s: no memory for platform data\n", __func__);

else if (!npd->cfg_gpio)

npd->cfg_gpio = s3c_i2c0_cfg_gpio;

s3c_device_i2c0.dev.platform_data = npd;

}

void s3c_i2c0_cfg_gpio(struct platform_device *dev)

{ // 位于arch/arm/plat-s3c24xx/setup-i2c.c

s3c2410_gpio_cfgpin(S3C2410_GPE(15), S3C2410_GPE15_IICSDA);

s3c2410_gpio_cfgpin(S3C2410_GPE(14), S3C2410_GPE14_IICSCL);

}

二、总线驱动实现

1.I2C适配器驱动加载卸载

[cpp]
view plaincopy

static
int s3c24xx_i2c_calcdivisor(unsigned
long clkin, unsigned
int wanted,

unsigned

int *div1, unsigned
int *divs)

{

unsigned

int calc_divs = clkin / wanted;

unsigned

int calc_div1;

if (calc_divs > (16*16))

calc_div1 = 512;

else

calc_div1 = 16;

calc_divs += calc_div1-1;

calc_divs /= calc_div1;

if (calc_divs == 0)

calc_divs = 1;

if (calc_divs > 17)

calc_divs = 17;

*divs = calc_divs;

*div1 = calc_div1;

return clkin / (calc_divs * calc_div1);

}

/* s3c24xx_i2c_clockrate

*

* work out a divisor for the user requested frequency setting,

* either by the requested frequency, or scanning the acceptable

* range of frequencies until something is found

*/

static
int s3c24xx_i2c_clockrate(struct
s3c24xx_i2c *i2c, unsigned int *got)

{

struct s3c2410_platform_i2c *pdata = i2c->dev->platform_data;

unsigned

long clkin = clk_get_rate(i2c->clk);
/* PCLK */

unsigned

int divs, div1;

unsigned

long target_frequency;
/* 需要设置速率默认100khz */

u32 iiccon;

int freq;

i2c->clkrate = clkin;

clkin /= 1000;

/* clkin now in KHz */

dev_dbg(i2c->dev,

"pdata desired frequency %lu\n", pdata->frequency);

target_frequency = pdata->frequency ? pdata->frequency : 100000;

target_frequency /= 1000;

/* Target frequency now in KHz */

freq = s3c24xx_i2c_calcdivisor(clkin, target_frequency, &div1, &divs);

/* 计算出IICCON中Tx clock source selection和Transmit clock value */

if (freq > target_frequency) {

dev_err(i2c->dev,

"Unable to achieve desired frequency %luKHz." \

" Lowest achievable %dKHz\n", target_frequency, freq);

return -EINVAL;

}

*got = freq;

iiccon = readl(i2c->regs + S3C2410_IICCON);

iiccon &= ~(S3C2410_IICCON_SCALEMASK | S3C2410_IICCON_TXDIV_512);

iiccon |= (divs-1);

if (div1 == 512)

iiccon |= S3C2410_IICCON_TXDIV_512;

writel(iiccon, i2c->regs + S3C2410_IICCON);

if (s3c24xx_i2c_is2440(i2c)) {
/* 2440设置IICLC */

unsigned

long sda_delay;

if (pdata->sda_delay) {

sda_delay = (freq / 1000) * pdata->sda_delay;

sda_delay /= 1000000;

sda_delay = DIV_ROUND_UP(sda_delay, 5);

if (sda_delay > 3)

sda_delay = 3;

sda_delay |= S3C2410_IICLC_FILTER_ON;

}

else

sda_delay = 0;

dev_dbg(i2c->dev,

"IICLC=%08lx\n", sda_delay);

writel(sda_delay, i2c->regs + S3C2440_IICLC);

}

return 0;

}

#ifdef CONFIG_CPU_FREQ

#define freq_to_i2c(_n) container_of(_n, struct s3c24xx_i2c, freq_transition)

static
int s3c24xx_i2c_cpufreq_transition(struct
notifier_block *nb,

unsigned

long val,
void *data)

{

struct s3c24xx_i2c *i2c = freq_to_i2c(nb);

unsigned

long flags;

unsigned

int got;

int delta_f;

int ret;

delta_f = clk_get_rate(i2c->clk) - i2c->clkrate;

/* if we're post-change and the input clock has slowed down

* or at pre-change and the clock is about to speed up, then

* adjust our clock rate. <0 is slow, >0 speedup.

*/

if ((val == CPUFREQ_POSTCHANGE && delta_f < 0) ||

(val == CPUFREQ_PRECHANGE && delta_f > 0)) {

spin_lock_irqsave(&i2c->lock, flags);

ret = s3c24xx_i2c_clockrate(i2c, &got);

spin_unlock_irqrestore(&i2c->lock, flags);

if (ret < 0)

dev_err(i2c->dev,

"cannot find frequency\n");

else

dev_info(i2c->dev,

"setting freq %d\n", got);

}

return 0;

}

static
inline
int s3c24xx_i2c_register_cpufreq(struct
s3c24xx_i2c *i2c)

{

i2c->freq_transition.notifier_call = s3c24xx_i2c_cpufreq_transition;

return cpufreq_register_notifier(&i2c->freq_transition,

CPUFREQ_TRANSITION_NOTIFIER);

}

static
inline
void s3c24xx_i2c_deregister_cpufreq(struct
s3c24xx_i2c *i2c)

{

cpufreq_unregister_notifier(&i2c->freq_transition,

CPUFREQ_TRANSITION_NOTIFIER);

}

#else

static
inline
int s3c24xx_i2c_register_cpufreq(struct
s3c24xx_i2c *i2c)

{

return 0;

}

static
inline
void s3c24xx_i2c_deregister_cpufreq(struct
s3c24xx_i2c *i2c)

{

}

#endif

/* s3c24xx_i2c_init

*

* initialise the controller, set the IO lines and frequency

*/

static
int s3c24xx_i2c_init(struct
s3c24xx_i2c *i2c)

{

unsigned

long iicon = S3C2410_IICCON_IRQEN | S3C2410_IICCON_ACKEN;

struct s3c2410_platform_i2c *pdata;

unsigned

int freq;

/* get the plafrom data */

pdata = i2c->dev->platform_data;

/* 获取platform_data */

/* inititalise the gpio */

if (pdata->cfg_gpio)

pdata->cfg_gpio(to_platform_device(i2c->dev));

/* write slave address */

writeb(pdata->slave_addr, i2c->regs + S3C2410_IICADD);

dev_info(i2c->dev,

"slave address 0x%02x\n", pdata->slave_addr);

writel(iicon, i2c->regs + S3C2410_IICCON);

/* we need to work out the divisors for the clock... */

if (s3c24xx_i2c_clockrate(i2c, &freq) != 0) {
/* 设置i2c速率 */

writel(0, i2c->regs + S3C2410_IICCON);

dev_err(i2c->dev,

"cannot meet bus frequency required\n");

return -EINVAL;

}

/* todo - check that the i2c lines aren't being dragged anywhere */

dev_info(i2c->dev,

"bus frequency set to %d KHz\n", freq);

dev_dbg(i2c->dev,

"S3C2410_IICCON=0x%02lx\n", iicon);

return 0;

}

/* s3c24xx_i2c_probe

*

* called by the bus driver when a suitable device is found

*/

static
int s3c24xx_i2c_probe(struct
platform_device *pdev)

{

struct s3c24xx_i2c *i2c;

struct s3c2410_platform_i2c *pdata;

struct resource *res;

int ret;

pdata = pdev->dev.platform_data;

/* 在平台设备资源中初始化了platform_data,关于platform_data参考前一节 */

if (!pdata) {

dev_err(&pdev->dev,

"no platform data\n");

return -EINVAL;

}

i2c = kzalloc(sizeof(struct
s3c24xx_i2c), GFP_KERNEL); /* s3c24xx_i2c分配空间 */

if (!i2c) {

dev_err(&pdev->dev,

"no memory for state\n");

return -ENOMEM;

}

strlcpy(i2c->adap.name,

"s3c2410-i2c",
sizeof(i2c->adap.name));
/* s3c24xx_i2c初始化 */

i2c->adap.owner = THIS_MODULE;

i2c->adap.algo = &s3c24xx_i2c_algorithm;

/* 通信方法,下一节重点介绍 */

i2c->adap.retries = 2;

i2c->adap.class
= I2C_CLASS_HWMON | I2C_CLASS_SPD;

i2c->tx_setup = 50;

spin_lock_init(&i2c->lock);

init_waitqueue_head(&i2c->wait);

/* find the clock and enable it */

i2c->dev = &pdev->dev;

i2c->clk = clk_get(&pdev->dev,

"i2c");
/* 时钟 */

if (IS_ERR(i2c->clk)) {

dev_err(&pdev->dev,

"cannot get clock\n");

ret = -ENOENT;

goto err_noclk;

}

dev_dbg(&pdev->dev,

"clock source %p\n", i2c->clk);

clk_enable(i2c->clk);

/* map the registers */

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

/* 寄存器映射 */

if (res == NULL) {

dev_err(&pdev->dev,

"cannot find IO resource\n");

ret = -ENOENT;

goto err_clk;

}

i2c->ioarea = request_mem_region(res->start, resource_size(res),

pdev->name);

if (i2c->ioarea == NULL) {

dev_err(&pdev->dev,

"cannot request IO\n");

ret = -ENXIO;

goto err_clk;

}

i2c->regs = ioremap(res->start, resource_size(res));

if (i2c->regs == NULL) {

dev_err(&pdev->dev,

"cannot map IO\n");

ret = -ENXIO;

goto err_ioarea;

}

dev_dbg(&pdev->dev,

"registers %p (%p, %p)\n",

i2c->regs, i2c->ioarea, res);

/* setup info block for the i2c core */

i2c->adap.algo_data = i2c;

i2c->adap.dev.parent = &pdev->dev;

/* initialise the i2c controller */

ret = s3c24xx_i2c_init(i2c);

/* 初始化 */

if (ret != 0)

goto err_iomap;

/* find the IRQ for this unit (note, this relies on the init call to

* ensure no current IRQs pending

*/

i2c->irq = ret = platform_get_irq(pdev, 0);

/* 中断申请 */

if (ret <= 0) {

dev_err(&pdev->dev,

"cannot find IRQ\n");

goto err_iomap;

}

ret = request_irq(i2c->irq, s3c24xx_i2c_irq, IRQF_DISABLED,

dev_name(&pdev->dev), i2c);

if (ret != 0) {

dev_err(&pdev->dev,

"cannot claim IRQ %d\n", i2c->irq);

goto err_iomap;

}

ret = s3c24xx_i2c_register_cpufreq(i2c);

/* 关于cpufreq没明白,有关cpufreq可以暂时不管 */

if (ret < 0) {

dev_err(&pdev->dev,

"failed to register cpufreq notifier\n");

goto err_irq;

}

/* Note, previous versions of the driver used i2c_add_adapter()

* to add the bus at any number. We now pass the bus number via

* the platform data, so if unset it will now default to always

* being bus 0.

*/

i2c->adap.nr = pdata->bus_num;

/*调用了i2c-core中的i2c_add_adapter函数来添加一个i2c控制器,i2c_add_numbered_adapter和i2c_add_adapter的

区别在于前者用来添加一个在CPU内部集成的适配器,而后者用来添加一个CPU外部的适配器。显然这里应该用前者 */

ret = i2c_add_numbered_adapter(&i2c->adap);

if (ret < 0) {

dev_err(&pdev->dev,

"failed to add bus to i2c core\n");

goto err_cpufreq;

}

platform_set_drvdata(pdev, i2c);

dev_info(&pdev->dev,

"%s: S3C I2C adapter\n", dev_name(&i2c->adap.dev));

return 0;

err_cpufreq:

s3c24xx_i2c_deregister_cpufreq(i2c);

err_irq:

free_irq(i2c->irq, i2c);

err_iomap:

iounmap(i2c->regs);

err_ioarea:

release_resource(i2c->ioarea);

kfree(i2c->ioarea);

err_clk:

clk_disable(i2c->clk);

clk_put(i2c->clk);

err_noclk:

kfree(i2c);

return ret;

}

/* s3c24xx_i2c_remove

*

* called when device is removed from the bus

*/

static
int s3c24xx_i2c_remove(struct
platform_device *pdev)

{

struct s3c24xx_i2c *i2c = platform_get_drvdata(pdev);

s3c24xx_i2c_deregister_cpufreq(i2c);

i2c_del_adapter(&i2c->adap);

/* 删除adapter*/

free_irq(i2c->irq, i2c);

clk_disable(i2c->clk);

clk_put(i2c->clk);

iounmap(i2c->regs);

release_resource(i2c->ioarea);

kfree(i2c->ioarea);

kfree(i2c);

return 0;

}

#ifdef CONFIG_PM

static
int s3c24xx_i2c_suspend_noirq(struct
device *dev)

{

struct platform_device *pdev = to_platform_device(dev);

struct s3c24xx_i2c *i2c = platform_get_drvdata(pdev);

i2c->suspended = 1;

return 0;

}

static
int s3c24xx_i2c_resume(struct
device *dev)

{

struct platform_device *pdev = to_platform_device(dev);

struct s3c24xx_i2c *i2c = platform_get_drvdata(pdev);

i2c->suspended = 0;

s3c24xx_i2c_init(i2c);

return 0;

}

static
struct dev_pm_ops s3c24xx_i2c_dev_pm_ops = {

.suspend_noirq = s3c24xx_i2c_suspend_noirq,

.resume = s3c24xx_i2c_resume,

};

#define S3C24XX_DEV_PM_OPS (&s3c24xx_i2c_dev_pm_ops)

#else

#define S3C24XX_DEV_PM_OPS NULL

#endif

/* device driver for platform bus bits */

static
struct platform_device_id s3c24xx_driver_ids[] = {

{

.name =

"s3c2410-i2c",

.driver_data = TYPE_S3C2410,

}, {

.name =

"s3c2440-i2c",

.driver_data = TYPE_S3C2440,

}, { },

};

MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);

static
struct platform_driver s3c24xx_i2c_driver = {

.probe = s3c24xx_i2c_probe,

.remove = s3c24xx_i2c_remove,

.id_table = s3c24xx_driver_ids,

//解释参见代码后面说明

.driver = {

.owner = THIS_MODULE,

.name =

"s3c-i2c",

.pm = S3C24XX_DEV_PM_OPS,

},

};

static
int __init i2c_adap_s3c_init(void)

{

return platform_driver_register(&s3c24xx_i2c_driver);

}

subsys_initcall(i2c_adap_s3c_init);

static
void __exit i2c_adap_s3c_exit(void)

{

platform_driver_unregister(&s3c24xx_i2c_driver);

}

module_exit(i2c_adap_s3c_exit);

MODULE_DESCRIPTION("S3C24XX I2C Bus driver");

MODULE_AUTHOR("Ben Dooks, <ben@simtec.co.uk>");

MODULE_LICENSE("GPL");

i2c_adap_s3c_init注册i2c平台驱动s3c24xx_i2c_driver,它是platform_driver结构体,不要误解为i2c_driver。同时还实现了probe、remove、id_table、driver,其中suspend、resume在driver中实现。i2c_adap_s3c_exit注销s3c24xx_i2c_driver。

关于平台驱动s3c24xx_i2c_driver中名字为s3c_i2c与平台设备中名字s3c2410-i2c不一样,怎么匹配?这里主要在于id_table,s3c24xx_driver_ids包含了驱动所支持的设备ID表,判断这个表中的名字与平台设备中名字一致,则匹配成功。

2.I2C通信方法

[cpp]
view plaincopy

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/i2c.h>

#include <linux/i2c-id.h>

#include <linux/init.h>

#include <linux/time.h>

#include <linux/interrupt.h>

#include <linux/delay.h>

#include <linux/errno.h>

#include <linux/err.h>

#include <linux/platform_device.h>

#include <linux/clk.h>

#include <linux/cpufreq.h>

#include <asm/irq.h>

#include <asm/io.h>

#include <plat/regs-iic.h>

#include <plat/iic.h>

/* i2c controller state */

enum
s3c24xx_i2c_state {

STATE_IDLE,

STATE_START,

STATE_READ,

STATE_WRITE,

STATE_STOP

};

enum
s3c24xx_i2c_type {

TYPE_S3C2410,

TYPE_S3C2440,

};

struct
s3c24xx_i2c {

spinlock_t lock;

wait_queue_head_t wait;

unsigned

int suspended:1;

struct i2c_msg *msg;

unsigned

int msg_num;

unsigned

int msg_idx;

unsigned

int msg_ptr;

unsigned

int tx_setup;

unsigned

int irq;

enum s3c24xx_i2c_state state;

unsigned

long clkrate;

void __iomem *regs;

struct clk *clk;

struct device *dev;

struct resource *ioarea;

struct i2c_adapter adap;

#ifdef CONFIG_CPU_FREQ

struct notifier_block freq_transition;

#endif

};

/* default platform data removed, dev should always carry data. */

/* s3c24xx_i2c_is2440()

*

* return true is this is an s3c2440

*/

static
inline
int s3c24xx_i2c_is2440(struct
s3c24xx_i2c *i2c)

{

struct platform_device *pdev = to_platform_device(i2c->dev);

enum s3c24xx_i2c_type type;

type = platform_get_device_id(pdev)->driver_data;

return type == TYPE_S3C2440;

}

/* s3c24xx_i2c_master_complete

*

* complete the message and wake up the caller, using the given return code,

* or zero to mean ok.

*/

static
inline
void s3c24xx_i2c_master_complete(struct
s3c24xx_i2c *i2c, int ret)

{

dev_dbg(i2c->dev,

"master_complete %d\n", ret);

i2c->msg_ptr = 0;

i2c->msg = NULL;

i2c->msg_idx++;

i2c->msg_num = 0;

if (ret)

i2c->msg_idx = ret;

wake_up(&i2c->wait);

}

static
inline
void s3c24xx_i2c_disable_ack(struct
s3c24xx_i2c *i2c)

{

unsigned

long tmp;

tmp = readl(i2c->regs + S3C2410_IICCON);

writel(tmp & ~S3C2410_IICCON_ACKEN, i2c->regs + S3C2410_IICCON);

}

static
inline
void s3c24xx_i2c_enable_ack(struct
s3c24xx_i2c *i2c)

{

unsigned

long tmp;

tmp = readl(i2c->regs + S3C2410_IICCON);

writel(tmp | S3C2410_IICCON_ACKEN, i2c->regs + S3C2410_IICCON);

}

/* irq enable/disable functions */

static
inline
void s3c24xx_i2c_disable_irq(struct
s3c24xx_i2c *i2c)

{

unsigned

long tmp;

tmp = readl(i2c->regs + S3C2410_IICCON);

writel(tmp & ~S3C2410_IICCON_IRQEN, i2c->regs + S3C2410_IICCON);

}

static
inline
void s3c24xx_i2c_enable_irq(struct
s3c24xx_i2c *i2c)

{

unsigned

long tmp;

tmp = readl(i2c->regs + S3C2410_IICCON);

writel(tmp | S3C2410_IICCON_IRQEN, i2c->regs + S3C2410_IICCON);

}

/* s3c24xx_i2c_message_start

*

* put the start of a message onto the bus

*/

static
void s3c24xx_i2c_message_start(struct
s3c24xx_i2c *i2c,

struct i2c_msg *msg)

{

unsigned

int addr = (msg->addr & 0x7f) << 1;

unsigned

long stat;

unsigned

long iiccon;

stat = 0;

stat |= S3C2410_IICSTAT_TXRXEN;

/* 使能TXRX */

if (msg->flags & I2C_M_RD) {
/* 设备地址 */

stat |= S3C2410_IICSTAT_MASTER_RX;

addr |= 1;

}

else

stat |= S3C2410_IICSTAT_MASTER_TX;

if (msg->flags & I2C_M_REV_DIR_ADDR)

addr ^= 1;

/* todo - check for wether ack wanted or not */

s3c24xx_i2c_enable_ack(i2c);

/* 使能ack */

iiccon = readl(i2c->regs + S3C2410_IICCON);

writel(stat, i2c->regs + S3C2410_IICSTAT);

dev_dbg(i2c->dev,

"START: %08lx to IICSTAT, %02x to DS\n", stat, addr);

writeb(addr, i2c->regs + S3C2410_IICDS);

/* 写设备地址 */

/* delay here to ensure the data byte has gotten onto the bus

* before the transaction is started */

ndelay(i2c->tx_setup);

dev_dbg(i2c->dev,

"iiccon, %08lx\n", iiccon);

writel(iiccon, i2c->regs + S3C2410_IICCON);

stat |= S3C2410_IICSTAT_START;

/* 启动i2c,当设备地址发送后就会进入中断,在中断中根据不同状态进行读写操作 */

writel(stat, i2c->regs + S3C2410_IICSTAT);

}

static
inline
void s3c24xx_i2c_stop(struct
s3c24xx_i2c *i2c, int ret)

{

unsigned

long iicstat = readl(i2c->regs + S3C2410_IICSTAT);

dev_dbg(i2c->dev,

"STOP\n");

/* stop the transfer */

iicstat &= ~S3C2410_IICSTAT_START;

writel(iicstat, i2c->regs + S3C2410_IICSTAT);

i2c->state = STATE_STOP;

s3c24xx_i2c_master_complete(i2c, ret);

s3c24xx_i2c_disable_irq(i2c);

}

/* helper functions to determine the current state in the set of

* messages we are sending */

/* 关于以下三个函数功能区别,后文详解 */

/* is_lastmsg()

*

* returns TRUE if the current message is the last in the set

*/

static
inline
int is_lastmsg(struct
s3c24xx_i2c *i2c)

{

return i2c->msg_idx >= (i2c->msg_num - 1);

}

/* is_msglast

*

* returns TRUE if we this is the last byte in the current message

*/

static
inline
int is_msglast(struct
s3c24xx_i2c *i2c)

{

return i2c->msg_ptr == i2c->msg->len-1;

}

/* is_msgend

*

* returns TRUE if we reached the end of the current message

*/

static
inline
int is_msgend(struct
s3c24xx_i2c *i2c)

{

return i2c->msg_ptr >= i2c->msg->len;

}

/* i2s_s3c_irq_nextbyte

*

* process an interrupt and work out what to do

*/

static
int i2s_s3c_irq_nextbyte(struct
s3c24xx_i2c *i2c, unsigned long iicstat)

{

/* 此函数比较复杂,在后文中将举一个具体例子来说明整个过程 */

unsigned

long tmp;

unsigned

char byte;

int ret = 0;

switch (i2c->state) {

case STATE_IDLE:

dev_err(i2c->dev,

"%s: called in STATE_IDLE\n", __func__);

goto out;

break;

case STATE_STOP:

dev_err(i2c->dev,

"%s: called in STATE_STOP\n", __func__);

s3c24xx_i2c_disable_irq(i2c);

goto out_ack;

case STATE_START:

/* last thing we did was send a start condition on the

* bus, or started a new i2c message

*/

if (iicstat & S3C2410_IICSTAT_LASTBIT &&

!(i2c->msg->flags & I2C_M_IGNORE_NAK)) {

/* ack was not received... */

dev_dbg(i2c->dev,

"ack was not received\n");

s3c24xx_i2c_stop(i2c, -ENXIO);

goto out_ack;

}

if (i2c->msg->flags & I2C_M_RD)

i2c->state = STATE_READ;

else

i2c->state = STATE_WRITE;

/* terminate the transfer if there is nothing to do

* as this is used by the i2c probe to find devices. */

if (is_lastmsg(i2c) && i2c->msg->len == 0) {

s3c24xx_i2c_stop(i2c, 0);

goto out_ack;

}

if (i2c->state == STATE_READ)

goto prepare_read;

/* fall through to the write state, as we will need to

* send a byte as well */

case STATE_WRITE:

/* we are writing data to the device... check for the

* end of the message, and if so, work out what to do

*/

if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) {

if (iicstat & S3C2410_IICSTAT_LASTBIT) {

dev_dbg(i2c->dev,

"WRITE: No Ack\n");

s3c24xx_i2c_stop(i2c, -ECONNREFUSED);

goto out_ack;

}

}

retry_write:

if (!is_msgend(i2c)) {

byte = i2c->msg->buf[i2c->msg_ptr++];

writeb(byte, i2c->regs + S3C2410_IICDS);

/* delay after writing the byte to allow the

* data setup time on the bus, as writing the

* data to the register causes the first bit

* to appear on SDA, and SCL will change as

* soon as the interrupt is acknowledged */

ndelay(i2c->tx_setup);

}

else
if (!is_lastmsg(i2c)) {

/* we need to go to the next i2c message */

dev_dbg(i2c->dev,

"WRITE: Next Message\n");

i2c->msg_ptr = 0;

i2c->msg_idx++;

i2c->msg++;

/* check to see if we need to do another message */

if (i2c->msg->flags & I2C_M_NOSTART) {

if (i2c->msg->flags & I2C_M_RD) {

/* cannot do this, the controller

* forces us to send a new START

* when we change direction */

s3c24xx_i2c_stop(i2c, -EINVAL);

}

goto retry_write;

}

else {

/* send the new start */

s3c24xx_i2c_message_start(i2c, i2c->msg);

i2c->state = STATE_START;

}

}

else {

/* send stop */

s3c24xx_i2c_stop(i2c, 0);

}

break;

case STATE_READ:

/* we have a byte of data in the data register, do

* something with it, and then work out wether we are

* going to do any more read/write

*/

byte = readb(i2c->regs + S3C2410_IICDS);

i2c->msg->buf[i2c->msg_ptr++] = byte;

prepare_read:

if (is_msglast(i2c)) {

/* last byte of buffer */

if (is_lastmsg(i2c))

s3c24xx_i2c_disable_ack(i2c);

}

else
if (is_msgend(i2c)) {

/* ok, we've read the entire buffer, see if there

* is anything else we need to do */

if (is_lastmsg(i2c)) {

/* last message, send stop and complete */

dev_dbg(i2c->dev,

"READ: Send Stop\n");

s3c24xx_i2c_stop(i2c, 0);

}

else {

/* go to the next transfer */

dev_dbg(i2c->dev,

"READ: Next Transfer\n");

i2c->msg_ptr = 0;

i2c->msg_idx++;

i2c->msg++;

}

}

break;

}

/* acknowlegde the IRQ and get back on with the work */

out_ack:

/* 退出时请pend flag */

tmp = readl(i2c->regs + S3C2410_IICCON);

tmp &= ~S3C2410_IICCON_IRQPEND;

writel(tmp, i2c->regs + S3C2410_IICCON);

out:

return ret;

}

/* s3c24xx_i2c_irq

*

* top level IRQ servicing routine

*/

static
irqreturn_t s3c24xx_i2c_irq(int irqno,
void *dev_id)

{

/* 中断第一次进入在调用s3c24xx_i2c_message_start写入设备地址后 */

struct s3c24xx_i2c *i2c = dev_id;

unsigned

long status;

unsigned

long tmp;

status = readl(i2c->regs + S3C2410_IICSTAT);

if (status & S3C2410_IICSTAT_ARBITR) {

/* deal with arbitration loss */

dev_err(i2c->dev,

"deal with arbitration loss\n");

}

if (i2c->state == STATE_IDLE) {

dev_dbg(i2c->dev,

"IRQ: error i2c->state == IDLE\n");

tmp = readl(i2c->regs + S3C2410_IICCON);

tmp &= ~S3C2410_IICCON_IRQPEND;

writel(tmp, i2c->regs + S3C2410_IICCON);

goto out;

}

/* pretty much this leaves us with the fact that we've

* transmitted or received whatever byte we last sent */

i2s_s3c_irq_nextbyte(i2c, status);

/* 根据不同状态步步推进读写操作,i2s_s3c_irq_nextbyte难点 */

out:

return IRQ_HANDLED;

}

/* s3c24xx_i2c_set_master

*

* get the i2c bus for a master transaction

*/

static
int s3c24xx_i2c_set_master(struct
s3c24xx_i2c *i2c)

{

unsigned

long iicstat;

int timeout = 400;

while (timeout-- > 0) {

iicstat = readl(i2c->regs + S3C2410_IICSTAT);

if (!(iicstat & S3C2410_IICSTAT_BUSBUSY))

return 0;

msleep(1);

}

return -ETIMEDOUT;

}

/* s3c24xx_i2c_doxfer

*

* this starts an i2c transfer

*/

static
int s3c24xx_i2c_doxfer(struct
s3c24xx_i2c *i2c,

struct i2c_msg *msgs,
int num)

{

unsigned

long timeout;

int ret;

if (i2c->suspended)

return -EIO;

ret = s3c24xx_i2c_set_master(i2c);

/* 检查i2c总线状态 */

if (ret != 0) {

dev_err(i2c->dev,

"cannot get bus (error %d)\n", ret);

ret = -EAGAIN;

goto out;

}

spin_lock_irq(&i2c->lock);

i2c->msg = msgs;

/* 把消息写入i2c结构体 */

i2c->msg_num = num;

i2c->msg_ptr = 0;

i2c->msg_idx = 0;

i2c->state = STATE_START;

s3c24xx_i2c_enable_irq(i2c);

/* 使能中断*/

s3c24xx_i2c_message_start(i2c, msgs);

/* 写设备地址,启动i2c */

spin_unlock_irq(&i2c->lock);

timeout = wait_event_timeout(i2c->wait, i2c->msg_num == 0, HZ * 5);

/* 等待消息传输完成,否则超时 */

ret = i2c->msg_idx;

/* 成功传输消息条数 */

/* having these next two as dev_err() makes life very

* noisy when doing an i2cdetect */

if (timeout == 0)

dev_dbg(i2c->dev,

"timeout\n");

else
if (ret != num)
/* 如果ret不等于原有消息条数,传输失败 */

dev_dbg(i2c->dev,

"incomplete xfer (%d)\n", ret);

/* ensure the stop has been through the bus */

msleep(1);

out:

return ret;

}

/* s3c24xx_i2c_xfer

*

* first port of call from the i2c bus code when an message needs

* transferring across the i2c bus.

*/

static
int s3c24xx_i2c_xfer(struct
i2c_adapter *adap,

struct i2c_msg *msgs,
int num)

{

struct s3c24xx_i2c *i2c = (struct
s3c24xx_i2c *)adap->algo_data;

int retry;

int ret;

for (retry = 0; retry < adap->retries; retry++) {
/* 传输不成功重复次数 */

ret = s3c24xx_i2c_doxfer(i2c, msgs, num);

/* 重点在这里实现 */

if (ret != -EAGAIN)

return ret;

dev_dbg(i2c->dev,

"Retrying transmission (%d)\n", retry);

udelay(100);

}

return -EREMOTEIO;

}

/* declare our i2c functionality */

static
u32 s3c24xx_i2c_func(struct i2c_adapter *adap)

{

/* 支持的功能,定义在i2c.h */

return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;

}

/* i2c bus registration info */

static
const
struct i2c_algorithm s3c24xx_i2c_algorithm = {

.master_xfer = s3c24xx_i2c_xfer,

.functionality = s3c24xx_i2c_func,

};

I2C适配器的通信方法整个驱动的重点,主要实现i2c_algorithm的master_xfer()和functionality()。s3c24xx_i2c_xfer中调用了s3c24xx_i2c_doxfer,然后启动i2c,并且通过中断s3c24xx_i2c_irq和i2s_s3c_irq_nextbyte来一步步推进传输工作。

通信方法传输是以消息为单位的,所有先了解消息结构体。消息i2c_msg包括地址、标志、一条消息包含的数据及长度。

struct i2c_msg {

__u16 addr; /* slave address */

__u16 flags;

#define I2C_M_TEN 0x0010 /* this is a ten bit chip address */

#define I2C_M_RD 0x0001 /* read data, from slave to master */

#define I2C_M_NOSTART 0x4000 /* if I2C_FUNC_PROTOCOL_MANGLING */

#define I2C_M_REV_DIR_ADDR 0x2000 /* if I2C_FUNC_PROTOCOL_MANGLING */

#define I2C_M_IGNORE_NAK 0x1000 /* if I2C_FUNC_PROTOCOL_MANGLING */

#define I2C_M_NO_RD_ACK 0x0800 /* if I2C_FUNC_PROTOCOL_MANGLING */

#define I2C_M_RECV_LEN 0x0400 /* length will be first received byte */

__u16 len; /* msg length */

__u8 *buf; /* pointer to msg data */

};

代码中提到的is_lastmsg、is_msglast、is_msgend到底判断是什么?在s3c24xx_i2c中定义的struct i2c_msg *msg看出可以包含多条消息,而一条消息有可能包含多个数据,比如对于AT24c02页写就包含多个数据。is_lastmsg判断是否是消息中最后一条,使用了变量msg_idx;is_msglast判断是否一条消息中最后一个数据,is_msgend判断是否是一条消息全部完成,所以这两个函数使用变量时msg_ptr。

下面就根据AT24C02具体的讲解s3c24xx_i2c_irq和i2s_s3c_irq_nextbyte如何实现传输。



任意地址字节写时序如上所示,只需要一条消息即可。其中flag位为写,写0即可,消息包括两个数据目标地址、数据,消息如下所示。

struct i2c_msg *msg;

msg=malloc(sizeof(struct i2c_msg));

msg.len=2; // 1个目标地址和1个数据

msg.addr=0x50; // 设备地址

msg.flags=0; // write

msg.buf=(unsigned char*)malloc(2);

msg.buf[0]=0x10;// 目标地址

msg.buf[1]=0x58;// the data to write

s3c24xx_i2c_xfer中调用了s3c24xx_i2c_doxfer,在s3c24xx_i2c_doxfer中把消息传入i2c->msg,使能中断,置i2c->state 为STATE_START,调用s3c24xx_i2c_message_start启动i2c发送设备地址,就等待中断来做后续工作。当设备地址发送后就会进入中断,继续进入i2s_s3c_irq_nextbyte的STATE_START,判断消息为写,置i2c->state 为STATE_WRITE,跳入STATE_WRITE,在retry_write这一段中,if先判断是否一条消息所有数据发送完,没发送完,则每次发送一条等待下次中断进入,每发送一个数据都要清pend位;发送完else
if判断是否最后一条消息,如果不是则要指针指向下一条消息继续if的步骤;最后else为发送完成,停止i2c。针对任意字节写只有一条消息,if中发送两次就完成本条消息传输。



任意地址字节读时序如上所示,需两条消息。第一条,写目标地址,flag位为写;第二条,读取数据,flag位为读,第一条与第二条消息之间要发送START。

struct i2c_msg *msgs;

msgs=malloc(2*sizeof(struct i2c_msg));

msgs[0].len=1; // 目标地址

msgs[0].addr=0x50; // 设备地址

msgs[0].flags=0; // write

msgs[0].buf=(unsigned char*)malloc(1);

msgs[0].buf[0]=0x10; // 目标地址

msgs[1].len=1; // 读出的数据

msgs[1].addr=0x50; // 设备地址

msgs[1].flags=I2C_M_RD; // read

msgs[1].buf=(unsigned char*)malloc(1);

msgs[1].buf[0]=0;// 初始化读缓冲

直接从中断开始讲,发送设备地址后,进入STATE_START,判断第一条消息为写,置i2c->state 为STATE_WRITE,跳入STATE_WRITE,第一条消息有一个数据,发送完成后,在else if中判断不是此条消息不是最后一条,就会执行else if中指向下一条消息,s3c24xx_i2c_message_start重新发送START,置i2c->state 为STATE_START。下次进入中跳到STATE_START,判断第二条消息为读,置i2c->state 为STATE_READ跳入STATE_READ,第二条消息只有一个数据,关闭ack,接收一个字节,停止i2c。看完这两个例子,再看i2s_s3c_irq_nextbyte就容易理解。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: