您的位置:首页 > 移动开发 > Objective-C

iOS (objective-c) 中的多线程互斥同步问题

2012-11-22 11:02 411 查看
在iOS中有几种方法来解决多线程访问同一个内存地址的互斥同步问题:

>>>方法一,@synchronized(id anObject),(最简单的方法)

会自动对参数对象加锁,保证临界区内的代码线程安全

@synchronized(self)
{
// 这段代码对其他 @synchronized(self) 都是互斥的
// self 指向同一个对象
}

>>>方法二,NSLock

NSLock对象实现了NSLocking protocol,包含几个方法:

lock,加锁

unlock,解锁

tryLock,尝试加锁,如果失败了,并不会阻塞线程,只是立即返回NO

lockBeforeDate:,在指定的date之前暂时阻塞线程(如果没有获取锁的话),如果到期还没有获取锁,则线程被唤醒,函数立即返回NO

比如:

NSLock *theLock
= [[NSLock alloc] init];

if
([theLock lock])
{
//do something here
[theLock unlock];

}

>>>方法三,NSRecursiveLock,递归锁

NSRecursiveLock,多次调用不会阻塞已获取该锁的线程。

NSRecursiveLock
*theLock =
[[NSRecursiveLock alloc] init];

void MyRecursiveFunction(int value)
{
[theLock lock];

if
(value !=
0)
{
–value;

MyRecursiveFunction(value);

}
[theLock unlock];

}
MyRecursiveFunction(5);

>>>方法四,NSConditionLock,条件锁

NSConditionLock,条件锁,可以设置条件

//公共部分
id condLock =
[[NSConditionLock alloc] initWithCondition:NO_DATA];

//线程一,生产者
while(true)
{
[condLock lockWhenCondition:NO_DATA];

//生产数据
[condLock unlockWithCondition:HAS_DATA];

}

//线程二,消费者
while (true)
{
[condLock lockWhenCondition:HAS_DATA];

//消费
[condLock unlockWithCondition:NO_DATA];

}

>>>方法五,NSDistributedLock,分布锁

NSDistributedLock,分布锁,文件方式实现,可以跨进程

用tryLock方法获取锁。

用unlock方法释放锁。

如果一个获取锁的进程在释放锁之前挂了,那么锁就一直得不到释放了,此时可以通过breakLock强行获取锁。

参考:
http://blog.sina.com.cn/s/blog_72819b170101590n.html
#define kBgQueue dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT,
0)

- (void)viewDidLoad
{
[super
viewDidLoad];

dispatch_async(kBgQueue, ^{

NSData* data = [NSData dataWithContentsOfURL:
kLatestKivaLoansURL];
[self
performSelectorOnMainThread:@selector(fetchedData:)
withObject:datawaitUntilDone:YES];
});
}

dispatch_async会向kBgQueue队列中添加新的任务去执行,这里kBgQueue队列使用dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT,
0)获得。

Dispatch Queues
Dispatch Queues从使用的角度将更象另一种形式的Operation Queues只是 Operation Queuse是用ObjectC的Dispatch Queues是C的
dispatch Queues有serial Queues 也被称为私有dispatch Queues,一个时间只能运行一个task,顺序运行
dispatch_queue_t queue;

queue = dispatch_queue_create("myQueue", NULL);
dispatch_async(queue, ^{

printf("Do some work here.\n");

});

printf("The first block may or may not have run.\n");

dispatch_sync(queue, ^{

printf("Do some more work here.\n");

});

printf("Both blocks have completed.\n");
这里使用了同步dispatch和异步dispatch,推荐使用dispatch_async这样才能真正体现其中的优势同步相当于WaitUntil = YES

还有一种就是Concurrent Queues每个程序系统自动提供了3个Concurrent Queues
dispatch_queue_t aQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
dispatch_queue_t aHQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0);

dispatch_queue_t aLQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_LOW, 0);
啥意思一看就明白,3个优先级别的concurrent queues

最后一个特殊的Dispatch Queue就是main dispatch Queue 也是程序启动自动生成
dispatch_queue_t mainQueue = dispatch_get_main_queue();

concurrent queues和main queue 都是由系统生成而且 dispatch_suspend, dispatch_resume, dispatch_set_context,这些函数对他们无效

但是我们的应用不是简单的同步也异步的运行,应用经常是混合的
比如我们要task1 task2 task3 都运行完成后才能异步运行task4 task5 task6我们该怎么做呢?这里我们可以引入group的概念

dispatch_queue_t aDQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

dispatch_group_t group = dispatch_group_create();

// Add a task to the group

dispatch_group_async(group, aDQueue, ^{

printf("task 1 \n");

});

dispatch_group_async(group, aDQueue, ^{

printf("task 2 \n");

});

dispatch_group_async(group, aDQueue, ^{

printf("task 3 \n");

});

printf("wait 1 2 3 \n");

dispatch_group_wait(group, DISPATCH_TIME_FOREVER);

printf("task 1 2 3 finished \n");

dispatch_release(group);

group = dispatch_group_create();

// Add a task to the group

dispatch_group_async(group, aDQueue, ^{

printf("task 4 \n");

});

dispatch_group_async(group, aDQueue, ^{

printf("task 5 \n");

});

dispatch_group_async(group, aDQueue, ^{

printf("task 6 \n");

});

printf("wait 4 5 6 \n");

dispatch_group_wait(group, DISPATCH_TIME_FOREVER);

printf("task 4 5 6 finished \n");

dispatch_release(group);

有时候我们也可以将设定一个数据在queue中 也可以定义一个结束函数
dispatch_set_finalizer_f 是在dispatch_release时候被调用
dispatch_queue_t serialQueue = dispatch_queue_create("com.example.CriticalTaskQueue", NULL);

if (serialQueue)

{

dispatch_set_context(serialQueue, self);

dispatch_set_finalizer_f(serialQueue, &myFinalizerFunction);

}

dispatch_group_t group = dispatch_group_create();

// Add a task to the group

dispatch_group_async(group, serialQueue, ^{

printf("task 1 \n");

});

dispatch_group_async(group, serialQueue, ^{

printf("task 2 \n");

});

dispatch_group_async(group, serialQueue, ^{

printf("task 3 \n");

});

printf("wait 1 2 3 \n");

dispatch_group_wait(group, DISPATCH_TIME_FOREVER);

dispatch_release(group);

dispatch_release(serialQueue);
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: