您的位置:首页 > 运维架构 > Linux

linux内核I2C驱动子系统分析(三)

2012-11-09 20:43 381 查看
那么i2c设备驱动开始上菜啦!
写设备驱动:
四部曲:

构建i2c_driver
注册i2c_driver
构建i2c_client ( 第一种方法:注册字符设备驱动、第二种方法:通过板文件的i2c_board_info填充,然后注册)
 注销i2c_driver

具体如下:
●    构建i2c_driver

static struct i2c_driver pca953x_driver = {

                .driver = {

                                    .name= "pca953x", //名称

                                },

                .id= ID_PCA9555,//id号

                .attach_adapter= pca953x_attach_adapter, //调用适配器连接设备

                .detach_client= pca953x_detach_client,//让设备脱离适配器

        };

●    注册i2c_driver

static int __init pca953x_init(void)

        {

                return i2c_add_driver(&pca953x_driver);

        }

        module_init(pca953x_init);

执行i2c_add_driver(&pca953x_driver)后,如果内核中已经注册了i2c适配器,则顺序调用这些适配器来连接我们的i2c设备。此过程是通过调用i2c_driver中的attach_adapter方法完成的。具体实现形式如下:

static int pca953x_attach_adapter(struct i2c_adapter *adapter)

        {

                return i2c_probe(adapter, &addr_data, pca953x_detect);

                /*

                adapter:适配器

                addr_data:地址信息

                pca953x_detect:探测到设备后调用的函数

                */

        }

地址信息addr_data是由下面代码指定的。

        /* Addresses to scan */

        static unsigned short normal_i2c[] = {0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,I2C_CLIENT_END};

        I2C_CLIENT_INSMOD;

注意:normal_i2c里的地址必须是你i2c芯片的地址。否则将无法正确探测到设备。而I2C_ CLIENT_INSMOD是一个宏,它会利用normal_i2c构建addr_data。

●    构建i2c_client,并注册字符设备驱动

i2c_probe在探测到目标设备后,后调用pca953x_detect,并把当时的探测地址address作为参数传入。
static int pca953x_detect(struct i2c_adapter *adapter, int address, int kind)

        {

                struct i2c_client *new_client;

                struct pca953x_chip *chip; //设备结构体

                int err = 0,result;

                dev_t pca953x_dev=MKDEV(pca953x_major,0);//构建设备号,根据具体情况设定,这里我只考虑了normal_i2c中只有一个地址匹配的情况。主次设备号来源
                if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA| I2C_FUNC_SMBUS_WORD_DATA))//判定适配器能力
                goto exit;
                if (!(chip = kzalloc(sizeof(struct pca953x_chip), GFP_KERNEL))) {
                        err = -ENOMEM;
                        goto exit;
                }
                /****构建i2c-client****/
                chip->client=kzalloc(sizeof(struct i2c_client),GFP_KERNEL);
                new_client = chip->client;
                i2c_set_clientdata(new_client, chip);
                new_client->addr = address;
                new_client->adapter = adapter;
                new_client->driver = &pca953x_driver;
                new_client->flags = 0;
                strlcpy(new_client->name, "pca953x", I2C_NAME_SIZE);
                if ((err = i2c_attach_client(new_client)))//注册i2c_client
                goto exit_kfree;
                if (err)
                goto exit_detach;
                if(pca953x_major)
                {
                        result=register_chrdev_region(pca953x_dev,1,"pca953x");
                }
                else{
                        result=alloc_chrdev_region(&pca953x_dev,0,1,"pca953x");
                        pca953x_major=MAJOR(pca953x_dev);
                }
                if (result < 0) {
                        printk(KERN_NOTICE "Unable to get pca953x region, error %d/n", result);
                        return result;
                }
                pca953x_setup_cdev(chip,0); //注册字符设备,此处不详解
                return 0;
                exit_detach:
                i2c_detach_client(new_client);
        exit_kfree:
                kfree(chip);
        exit:
                return err;
        }

i2c_check_functionality用来判定设配器的能力,这一点非常重要。你也可以直接查看对应设配器的能力,如

static const struct i2c_algorithm smbus_algorithm = {

                .smbus_xfer= i801_access,

                .functionality= i801_func,

        };

        static u32 i801_func(struct i2c_adapter *adapter)

        {

                        return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |

                    I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |

                I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_WRITE_I2C_BLOCK

                                | (isich4 ? I2C_FUNC_SMBUS_HWPEC_CALC : 0);

        }

    字符驱动的具体实现

struct file_operations pca953x_fops = {

                .owner = THIS_MODULE,

                .ioctl= pca953x_ioctl, 

                .open= pca953x_open, 

                .release =pca953x_release, 

        };

字符设备驱动本身没有什么好说的,这里主要想说一下,如何在驱动中调用i2c设配器帮我们完成数据传输。

目前设配器主要支持两种传输方法:smbus_xfer和master_xfer。一般来说,如果设配器支持了master_xfer那么它也可以模拟支持smbus的传输。但如果只实现smbus_xfer,则不支持一些i2c的传输。

int (*master_xfer)(struct i2c_adapter *adap,struct i2c_msg *msgs,int num);

        int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,

                                                                                unsigned short flags, char read_write,

                                                                u8 command, int size, union i2c_smbus_data * data);

master_xfer中的参数设置,和前面的用户空间编程一致。现在只是要在驱动中构建相关的参数然后调用i2c_transfer来完成传输既可。

int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg *msgs, int num)

smbus_xfer中的参数设置及调用方法如下:

static int pca953x_write_reg(struct pca953x_chip *chip, int reg, uint16_t val)

        {

                int ret;

                ret = i2c_smbus_write_word_data(chip->client, reg << 1, val);

                if (ret < 0) {

                                dev_err(&chip->client->dev, "failed writing register/n");

                                        return -EIO;

                                }

                return 0;

        }

上面函数完成向芯片的地址为reg的寄存器写一个16bit的数据。i2c_smbus_write_word_data的实现如下:

s32 i2c_smbus_write_word_data(struct i2c_client *client, u8 command, u16 value)

        {

                union i2c_smbus_data data;

                data.word = value;

                return i2c_smbus_xfer(client->adapter,client->addr,client->flags,

                                                                        I2C_SMBUS_WRITE,command,

                                                                        I2C_SMBUS_WORD_DATA,&data);

        }

从中可以看出smbus传输一个16位数据的方法。其它操作如:字符写、字符读、字读、块操作等,可以参考内核的i2c-core.c中提供的方法。

注释:i2c_client 信息通常在BSP的板文件中通过i2c_board_info 填充,如:
定义一个I2C设备ID为“ad7142_joystick”、地址为0x2C、中断号为IRQ_PF5的i2c_client

static struct i2c_board_info __initdata xxx_i2c_board_info[] = {
    {
        I2C_BOARD_INFO(“ad7142_joystick”,0x2C),
        .irq = IRQ_PF5,

    },

.........
};
然后注册
i2c_register_board_info(1, i2c_devs1, ARRAY_SIZE(i2c_devs1));
通过这个就完成了i2c_client 的注册

●    注销i2c_driver

static void __exit pca953x_exit(void)

        {

                i2c_del_driver(&pca953x_driver);

        }

        module_exit(pca953x_exit);

顺序调用内核中注册的适配器来断开我们注册过的i2c设备。此过程通过调用i2c_driver中的attach_adapter方法完成的。具体实现形式如下:

static int pca953x_detach_client(struct i2c_client *client)

        {

                int err;

                struct pca953x_chip *data;

                if ((err = i2c_detach_client(client)))//断开i2c_client

                return err;

                data=i2c_get_clientdata(client);

                cdev_del(&(data->cdev));

                unregister_chrdev_region(MKDEV(pca953x_major, 0), 1);

                kfree(data->client);

                kfree(data);

                return 0;

        }

我说:
其实主芯片的i2c的驱动基本上都支持啦,哈哈,所以剩下的工作量不是很大,只需完成从芯片的i2c的驱动操作就ok啦,那个只是分析如何编写的便于深入理解。

几个重要的结构体:i2c_msg(设置设备地址的)、i2c_client(从机设备的地址,一般采用平台设备的形式,用probe函数探测)、i2c_driver自己构建
几个重要的方法:i2c_add_driver添加设备、i2c_transfer用于进行I2C适配器和I2C设备之间的一组消息的交互
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: