您的位置:首页 > 其它

LDD3源码分析之并发与竞态

2012-06-02 16:21 281 查看
作者:刘昊昱

博客:http://blog.csdn.net/liuhaoyutz

编译环境:Ubuntu 10.10

内核版本:2.6.32-38-generic-pae

LDD3源码路径:examples/scull/main.c examples/misc-modules/complete.c

本文分析LDD3第五章并发与竞态相关代码,本章代码涉及两个内容,一个是信号量,另一个是completion。

一、scull中信号量的使用

在scull_write函数中有如下代码片断:

[cpp] view
plaincopy

364 if (!dptr->data[s_pos]) {

365 dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);

366 if (!dptr->data[s_pos])

367 goto out;

368 }

假设有两个进程A和B同时在尝试向同一个scull设备的相同偏移量写入数据,而且在同一时刻达到364行的if判断。如果dptr->data[s_pos]的值为NULL,两个进程都决定分配内存,则A、B进程都会把kmalloc的返回值赋值给dptr->data[s_pos]。显然,后赋值的那个进程会覆盖先赋值的进程的所赋的值。并且造成先赋值进程所分配的内存无法再找回来。

上述情况就是一种竞态。为了避免竞态的发生,scull使用了信号量。

scull设备用scull_dev结构体表示,该结构体在scull.h中定义如下:

[cpp] view
plaincopy

87struct scull_dev {

88 struct scull_qset *data; /* Pointer to first quantum set */

89 int quantum; /* the current quantum size */

90 int qset; /* the current array size */

91 unsigned long size; /* amount of data stored here */

92 unsigned int access_key; /* used by sculluid and scullpriv */

93 struct semaphore sem; /* mutual exclusion semaphore */

94 struct cdev cdev; /* Char device structure */

95};

在scull_dev结构体中,93行定义的sem成员,就是信号量,因为每个scull_dev结构体代表一个scull设备,所以每个scull设备都有一个专用的信号量。

如果要对使用的scull设备使用一个全局的信号量也是可以的,但是,不同的scull设备并不共享资源,没有理由让一个进程在其他进程访问不同的scull设备时等待。为每个scull设备提供专用的信号量,允许不同设备上的操作可以并行处理,从而提高性能。

信号量在使用之前必须先初始化,scull在模块初始化函数scull_init_module中执行下面的循环完成对所有scull设备专用信号量的初始化:

[cpp] view
plaincopy

648 /* Initialize each device. */

649 for (i = 0; i < scull_nr_devs; i++) {

650 scull_devices[i].quantum = scull_quantum;

651 scull_devices[i].qset = scull_qset;

652 init_MUTEX(&scull_devices[i].sem);

653 scull_setup_cdev(&scull_devices[i], i);

654 }

这个for循环每循环一次,完成对一个scull设备的初始化,其中652行,调用init_MUTEX每个设备专用的信号量(互斥体)进行初始化。要注意,信号量必须在设备被注册到系统中之前完成初始化,否则会出现竞态。scull设备的注册是在653行的scull_setup_cdev函数中完成的,所以在这个函数调用之前,我们完成了对信号量的初始化。

在使用信号量之前,首先要明确什么是需要用信号量保护的资源,然后,我们才能用信号量保证对这些资源的互斥访问。对于scull设备来说,所有的信息都保存在scull_dev结构体中,因此,scull_dev就是我们要保护的资源。

在main.c文件在有很多地方使用了信号量来保证对scull_dev的互斥访问。或者说,凡是要改变scull_dev结构休内容的地方,都必须加锁,防止竞态。

例如,在scull_write函数中,有如下语句:

[cpp] view
plaincopy

346 if (down_interruptible(&dev->sem))

347 return -ERESTARTSYS;

346行,调用down_interruptible(&dev->sem)进行加锁,注意,要对down_interruptible的返回值进行检查,如果返回0,说明说明加锁成功了,可以开始操作受保护的资源scull_dev,反之,如果down_interruptible返回非0值,说明是在等待过程中被中断了,这时要退出并返回-ERESTARTSYS,交给系统处理。

给信号量加锁后,不管scull_write能否完成其工作,都必须释放信号量,代码如下:

[cpp] view
plaincopy

384 out:

385 up(&dev->sem);

386 return retval;

385行,释放信号量。

至此,信号量相关的代码就分析完了。

二、completion的使用

驱动开发中,有时我们需要在当前线程(A)之外创建另外一个线程(B)执行某个活动,然后线程(A)等待该活动结束,待活动结束后,线程(A)再继续向下执行。例如,这个活动可以是某种硬件操作。这种情况下,要实现新老线程的同步,可以使用completion接口。

注意,上面所说的情况,使用信号量也能实现同步,但信号量并不适合。因为在通常的使用中,如果试图锁定某个信号量,一般来说,都能加锁成功。如果存在对信号量的严重竞争,性能将受很大影响。这时,我们就需要检查一下我们的加锁操作设计是不是有问题了。信号量对“可用”情况已经做了大量优化。对于上面所说的情况,如果用信号量实现同步,则加锁的线程几乎总是要等待,造成系统性能下降。

completion是一种轻量级的机制,它允许一个线程告诉另外一个线程某个工作已经完成。

等待completion使用如下函数:

void wait_for_completion(struct completion *c);

相应的,completion事件可以通过如下函数触发:

void complete(struct completion *c);

void complete_all(struct completion *c);

如果有多个线程在等待同一个completion事件,complete函数只唤醒一个等待线程,而complete_all函数将唤醒所有等待线程。

LDD3提供了一个complete模块演示completion机制的用法.这个模块代码不多,下面列出其源码:

[cpp] view
plaincopy

1/*

2 * complete.c -- the writers awake the readers

3 *

4 * Copyright (C) 2003 Alessandro Rubini and Jonathan Corbet

5 * Copyright (C) 2003 O'Reilly & Associates

6 *

7 * The source code in this file can be freely used, adapted,

8 * and redistributed in source or binary form, so long as an

9 * acknowledgment appears in derived source files. The citation

10 * should list that the code comes from the book "Linux Device

11 * Drivers" by Alessandro Rubini and Jonathan Corbet, published

12 * by O'Reilly & Associates. No warranty is attached;

13 * we cannot take responsibility for errors or fitness for use.

14 *

15 * $Id: complete.c,v 1.2 2004/09/26 07:02:43 gregkh Exp $

16 */

17

18#include <linux/module.h>

19#include <linux/init.h>

20

21#include <linux/sched.h> /* current and everything */

22#include <linux/kernel.h> /* printk() */

23#include <linux/fs.h> /* everything... */

24#include <linux/types.h> /* size_t */

25#include <linux/completion.h>

26

27MODULE_LICENSE("Dual BSD/GPL");

28

29static int complete_major = 0;

30

31DECLARE_COMPLETION(comp);

32

33ssize_t complete_read (struct file *filp, char __user *buf, size_t count, loff_t *pos)

34{

35 printk(KERN_DEBUG "process %i (%s) going to sleep\n",

36 current->pid, current->comm);

37 wait_for_completion(&comp);

38 printk(KERN_DEBUG "awoken %i (%s)\n", current->pid, current->comm);

39 return 0; /* EOF */

40}

41

42ssize_t complete_write (struct file *filp, const char __user *buf, size_t count,

43 loff_t *pos)

44{

45 printk(KERN_DEBUG "process %i (%s) awakening the readers...\n",

46 current->pid, current->comm);

47 complete(&comp);

48 return count; /* succeed, to avoid retrial */

49}

50

51

52struct file_operations complete_fops = {

53 .owner = THIS_MODULE,

54 .read = complete_read,

55 .write = complete_write,

56};

57

58

59int complete_init(void)

60{

61 int result;

62

63 /*

64 * Register your major, and accept a dynamic number

65 */

66 result = register_chrdev(complete_major, "complete", &complete_fops);

67 if (result < 0)

68 return result;

69 if (complete_major == 0)

70 complete_major = result; /* dynamic */

71 return 0;

72}

73

74void complete_cleanup(void)

75{

76 unregister_chrdev(complete_major, "complete");

77}

78

79module_init(complete_init);

80module_exit(complete_cleanup);

79行,指定模块初始化函数为complete_init。

80行,指定模块清理函数是complete_cleanup。

我们先看模块初始化函数complete_init的实现:

66行,使用老的字符设备注册函数register_chrdev注册字符设备,因为在29行设置complete_major为0,所以是由系统动态分配主设备号;模块名称为”complete”;模块对应的文件操作函数集是complete_fops。

52 - 56行,定义了complete_fops,指定读写操作分别是complete_read和complete_write。

下面看complete_read的实现:

在打印即将进入睡眠的信息后,complete_read在37行调用wait_for_completion(&comp),进入睡眠,即等待completion
“comp”。”comp”是在31行用DECLARE_COMPLETION(comp)创建的。如果等待的completion发生了,complete_read函数将再次打印已被唤醒相关信息。

也就是说,任何进程读取模块设备文件,都会进入睡眠等待。

再来看complete_write的实现:

首先打印提示信息,然后在47行调用complete(&comp)触发completion事件,相应会唤醒一个在等待”comp”的进程。

可以有多个进程进行读操作,这些读进程都会进入睡眠等待,当有执行写操作的进程时,只有一个等待进程会被唤醒,但是哪个进程,不能确定。

为测试complete模块,我改写了LDD3提供的scull_load和scull_unload脚本,命名为complete_load和complete_unload。

complete_load脚本的内容如下所示:

[cpp] view
plaincopy

#!/bin/sh

# $Id: complete_load,v 1.4 2004/11/03 06:19:49 rubini Exp $

module="complete"

device="complete"

mode="666"

# Group: since distributions do it differently, look for wheel or use staff

if grep -q '^staff:' /etc/group; then

group="staff"

else

group="wheel"

fi

# invoke insmod with all arguments we got

# and use a pathname, as insmod doesn't look in . by default

/sbin/insmod ./$module.ko $* || exit 1

# retrieve major number

major=$(awk "\$2==\"$module\" {print \$1}" /proc/devices)

# Remove stale nodes and replace them, then give gid and perms

# Usually the script is shorter, it's scull that has several devices in it.

rm -f /dev/${device}

mknod /dev/${device} c $major 0

chgrp $group /dev/${device}

chmod $mode /dev/${device}

complete_unload脚本的内容如下所示:

[cpp] view
plaincopy

#!/bin/sh

module="complete"

device="complete"

# invoke rmmod with all arguments we got

/sbin/rmmod $module $* || exit 1

# Remove stale nodes

rm -f /dev/${device}

complete模块的测试过程如下:

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息