您的位置:首页 > 移动开发 > Android开发

Android pthread mutex 实现分析

2012-05-27 21:07 405 查看
在Android ICS中,pthead库对应的路径为:

Android\bionic\libc\bionic\pthread.c

Android\bionic\libc\bionic\pthread-atfork.c

Android\bionic\libc\bionic\pthread-rwlocks.c

Android\bionic\libc\bionic\pthread-timers.c

Android\bionic\libc\bionic\pthread_internal.h

Android\bionic\libc\include\pthread.h

其中mutex在pthread.c中,相关的API有:

//pthread mutexattr 操作
int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type);
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared);
int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared);

//pthread mutex 操作
int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_timedlock(pthread_mutex_t *mutex, struct timespec*  ts);


pthread_mutex_t对应一个结构体,包含一个int字段

typedef struct{    int volatile value;} pthread_mutex_t;

int字段分为5个部分,

/*

a mutex is implemented as a 32-bit integer holding the following fields

 * * bits:     name     description

* 31-16     tid      owner thread's kernel id (recursive and errorcheck only)

 * 15-14     type     mutex type

* 13           shared   process-shared flag

* 12-2       counter  counter of recursive mutexes

* 1-0         state    lock state (0, 1 or 2)

*/



定义了一些macro来获得各个部分,其中mutex的type分为3类,有Normal, Recursive, Errorcheck,Recursize允许递归,Errorcheck会检测当前的状态。

#define  MUTEX_OWNER(m)  (((m)->value >> 16) & 0xffff)
#define  MUTEX_COUNTER(m) (((m)->value >> 2) & 0xfff)

#define  MUTEX_TYPE_MASK       0xc000
#define  MUTEX_TYPE_NORMAL     0x0000
#define  MUTEX_TYPE_RECURSIVE  0x4000
#define  MUTEX_TYPE_ERRORCHECK 0x8000

#define  MUTEX_COUNTER_SHIFT  2
#define  MUTEX_COUNTER_MASK   0x1ffc
#define  MUTEX_SHARED_MASK    0x2000

enum {
PTHREAD_MUTEX_NORMAL = 0,
PTHREAD_MUTEX_RECURSIVE = 1,
PTHREAD_MUTEX_ERRORCHECK = 2,

PTHREAD_MUTEX_ERRORCHECK_NP = PTHREAD_MUTEX_ERRORCHECK,
PTHREAD_MUTEX_RECURSIVE_NP  = PTHREAD_MUTEX_RECURSIVE,

PTHREAD_MUTEX_DEFAULT = PTHREAD_MUTEX_NORMAL
};


1 Mutex属性

pthread_mutexattr_t用来描述mutex的属性,

typedef long pthread_mutexattr_t;

属性包含了mutex的type,以及sharedflag。对应于mutex_t

 * 15-14     type     mutex type

 * 13           shared   process-shared flag

/* a mutex attribute holds the following fields

 *

 * bits:     name       description

 * 0-3       type       type of mutex

 * 4         shared     process-shared flag

 */

#define  MUTEXATTR_TYPE_MASK   0x000f

#define  MUTEXATTR_SHARED_MASK 0x0010

#define PTHREAD_PROCESS_PRIVATE  0

#define PTHREAD_PROCESS_SHARED   1



1.1 init和destory

init将type设置为Default,也就是Normal(0)也就是,type=Normal, shared  为Private

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)
{
int value = 0;

if (mutex == NULL)
return EINVAL;

if (__likely(attr == NULL)) {
mutex->value = MUTEX_TYPE_NORMAL;
return 0;
}

if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
value |= MUTEX_SHARED_MASK;

switch (*attr & MUTEXATTR_TYPE_MASK) {
case PTHREAD_MUTEX_NORMAL:
value |= MUTEX_TYPE_NORMAL;
break;
case PTHREAD_MUTEX_RECURSIVE:
value |= MUTEX_TYPE_RECURSIVE;
break;
case PTHREAD_MUTEX_ERRORCHECK:
value |= MUTEX_TYPE_ERRORCHECK;
break;
default:
return EINVAL;
}

mutex->value = value;
return 0;
}
//destory将attr置为-1
int pthread_mutex_destroy(pthread_mutex_t *mutex)
{
int ret;

/* use trylock to ensure that the mutex value is
* valid and is not already locked. */
ret = pthread_mutex_trylock(mutex);
if (ret != 0)
return ret;

mutex->value = 0xdead10cc;
return 0;
}

1.2 settype 和gettype

对pthread_mutexattr_t的type字段进行取值和赋值

int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
{
if (attr) {
int  atype = (*attr & MUTEXATTR_TYPE_MASK);

if (atype >= PTHREAD_MUTEX_NORMAL &&
atype <= PTHREAD_MUTEX_ERRORCHECK) {
*type = atype;
return 0;
}
}
return EINVAL;
}

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
if (attr && type >= PTHREAD_MUTEX_NORMAL &&
type <= PTHREAD_MUTEX_ERRORCHECK ) {
*attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
return 0;
}
return EINVAL;

}


1.3 setpshared和getpshared

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
{
if (!attr)
return EINVAL;

switch (pshared) {
case PTHREAD_PROCESS_PRIVATE:
*attr &= ~MUTEXATTR_SHARED_MASK;
return 0;

case PTHREAD_PROCESS_SHARED:
/* our current implementation of pthread actually supports shared
* mutexes but won't cleanup if a process dies with the mutex held.
* Nevertheless, it's better than nothing. Shared mutexes are used
* by surfaceflinger and audioflinger.
*/
*attr |= MUTEXATTR_SHARED_MASK;
return 0;
}
return EINVAL;
}

int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
{
if (!attr || !pshared)
return EINVAL;

*pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
: PTHREAD_PROCESS_PRIVATE;
return 0;
}


2 Mutex实现

2.1 Mutex init和 destory

如果attr==NULL,则采用默认属性, type =normal, shared = private,

否则,感觉属性的type和shared进行设置

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)
{
int value = 0;

if (mutex == NULL)
return EINVAL;

if (__likely(attr == NULL)) {
mutex->value = MUTEX_T
4000
YPE_NORMAL;
return 0;
}

if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
value |= MUTEX_SHARED_MASK;

switch (*attr & MUTEXATTR_TYPE_MASK) {
case PTHREAD_MUTEX_NORMAL:
value |= MUTEX_TYPE_NORMAL;
break;
case PTHREAD_MUTEX_RECURSIVE:
value |= MUTEX_TYPE_RECURSIVE;
break;
case PTHREAD_MUTEX_ERRORCHECK:
value |= MUTEX_TYPE_ERRORCHECK;
break;
default:
return EINVAL;
}

mutex->value = value;
return 0;
}
如果mutex当前不被lock,则设置value为0xdead10cc
int pthread_mutex_destroy(pthread_mutex_t *mutex)
{
    int ret;

    /* use trylock to ensure that the mutex value is
     * valid and is not already locked. */
    ret = pthread_mutex_trylock(mutex);
    if (ret != 0)
        return ret;

    mutex->value = 0xdead10cc;
    return 0;
}

2.2 lock, unlock, trylock, timedlock

int pthread_mutex_lock(pthread_mutex_t *mutex)
{
int mtype, tid, new_lock_type, shared;

if (__unlikely(mutex == NULL))
return EINVAL;

mtype = (mutex->value & MUTEX_TYPE_MASK);
shared = (mutex->value & MUTEX_SHARED_MASK);

/* Handle normal case first */
if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) {//type为normal,
_normal_lock(mutex);
return 0;
}

/* Do we already own this recursive or error-check mutex ? */
tid = __get_thread()->kernel_id;
if ( tid == MUTEX_OWNER(mutex) )//已经持有mutex,递归的情况
{
int  oldv, counter;

if (mtype == MUTEX_TYPE_ERRORCHECK) {
/* trying to re-lock a mutex we already acquired */
return EDEADLK;
}
/*
* We own the mutex, but other threads are able to change
* the contents (e.g. promoting it to "contended"), so we
* need to hold the global lock.
*/
_recursive_lock();//更新counter
oldv         = mutex->value;
counter      = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
_recursive_unlock();
return 0;
}

/* We don't own the mutex, so try to get it.
*
* First, we try to change its state from 0 to 1, if this
* doesn't work, try to change it to state 2.
*/
new_lock_type = 1;

/* compute futex wait opcode and restore shared flag in mtype */
mtype |= shared;

for (;;) {
int  oldv;

_recursive_lock();
oldv = mutex->value;
if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
mutex->value = ((tid << 16) | mtype | new_lock_type);
} else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
oldv ^= 3;
mutex->value = oldv;
}
_recursive_unlock();

if (oldv == mtype)
break;

/*
* The lock was held, possibly contended by others.  From
* now on, if we manage to acquire the lock, we have to
* assume that others are still contending for it so that
* we'll wake them when we unlock it.
*/
new_lock_type = 2;

__futex_wait_ex(&mutex->value, shared, oldv, NULL);
}
return 0;
}


normal 的情况

/*
* Lock a non-recursive mutex.
*
* As noted above, there are three states:
*   0 (unlocked, no contention)
*   1 (locked, no contention)
*   2 (locked, contention)
*
* Non-recursive mutexes don't use the thread-id or counter fields, and the
* "type" value is zero, so the only bits that will be set are the ones in
* the lock state field.
*/
static __inline__ void
_normal_lock(pthread_mutex_t*  mutex)
{
/* We need to preserve the shared flag during operations */
int  shared = mutex->value & MUTEX_SHARED_MASK;
/*
* The common case is an unlocked mutex, so we begin by trying to
* change the lock's state from 0 to 1.  __atomic_cmpxchg() returns 0
* if it made the swap successfully.  If the result is nonzero, this
* lock is already held by another thread.
*/

if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value ) != 0) {
/*
* We want to go to sleep until the mutex is available, which
* requires promoting it to state 2.  We need to swap in the new
* state value and then wait until somebody wakes us up.
*
* __atomic_swap() returns the previous value.  We swap 2 in and
* see if we got zero back; if so, we have acquired the lock.  If
* not, another thread still holds the lock and we wait again.
*
* The second argument to the __futex_wait() call is compared
* against the current value.  If it doesn't match, __futex_wait()
* returns immediately (otherwise, it sleeps for a time specified
* by the third argument; 0 means sleep forever).  This ensures
* that the mutex is in state 2 when we go to sleep on it, which
* guarantees a wake-up call.
*/
while (__atomic_swap(shared|2, &mutex->value ) != (shared|0))//等待muex
__futex_wait_ex(&mutex->value, shared, shared|2, 0);
}
ANDROID_MEMBAR_FULL();
}


在recursive的情况下,需要使用mutex来包含counter,

static pthread_mutex_t  __recursive_lock = PTHREAD_MUTEX_INITIALIZER;

static void
_recursive_lock(void)
{
_normal_lock(&__recursive_lock);
}

static void
_recursive_unlock(void)
{
_normal_unlock(&__recursive_lock );
}


unlock的情况

int pthread_mutex_unlock(pthread_mutex_t *mutex)
{
int mtype, tid, oldv, shared;

if (__unlikely(mutex == NULL))
return EINVAL;

mtype  = (mutex->value & MUTEX_TYPE_MASK);
shared = (mutex->value & MUTEX_SHARED_MASK);

/* Handle common case first */
if (__likely(mtype == MUTEX_TYPE_NORMAL)) {//normal
_normal_unlock(mutex);
return 0;
}

/* Do we already own this recursive or error-check mutex ? */
tid = __get_thread()->kernel_id;
if ( tid != MUTEX_OWNER(mutex) )//error check的情况,错误退出
return EPERM;

/* We do, decrement counter or release the mutex if it is 0 */
_recursive_lock();
oldv = mutex->value;
if (oldv & MUTEX_COUNTER_MASK) {
mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT);
oldv = 0;
} else {
mutex->value = shared | mtype;
}
_recursive_unlock();

/* Wake one waiting thread, if any */
if ((oldv & 3) == 2) {
__futex_wake_ex(&mutex->value, shared, 1);
}
return 0;
}

/*
 * Release a non-recursive mutex.  The caller is responsible for determining
 * that we are in fact the owner of this lock.
 */
static __inline__ void
_normal_unlock(pthread_mutex_t*  mutex)
{
    ANDROID_MEMBAR_FULL();

    /* We need to preserve the shared flag during operations */
    int  shared = mutex->value & MUTEX_SHARED_MASK;

    /*
     * The mutex state will be 1 or (rarely) 2.  We use an atomic decrement
     * to release the lock.  __atomic_dec() returns the previous value;
     * if it wasn't 1 we have to do some additional work.
     */
    if (__atomic_dec(&mutex->value) != (shared|1)) {
        /*
         * Start by releasing the lock.  The decrement changed it from
         * "contended lock" to "uncontended lock", which means we still
         * hold it, and anybody who tries to sneak in will push it back
         * to state 2.
         *
         * Once we set it to zero the lock is up for grabs.  We follow
         * this with a __futex_wake() to ensure that one of the waiting
         * threads has a chance to grab it.
         *
         * This doesn't cause a race with the swap/wait pair in
         * _normal_lock(), because the __futex_wait() call there will
         * return immediately if the mutex value isn't 2.
         */
        mutex->value = shared;

        /*
         * Wake up one waiting thread.  We don't know which thread will be
         * woken or when it'll start executing -- futexes make no guarantees
         * here.  There may not even be a thread waiting.
         *
         * The newly-woken thread will replace the 0 we just set above
         * with 2, which means that when it eventually releases the mutex
         * it will also call FUTEX_WAKE.  This results in one extra wake
         * call whenever a lock is contended, but lets us avoid forgetting
         * anyone without requiring us to track the number of sleepers.
         *
         * It's possible for another thread to sneak in and grab the lock
         * between the zero assignment above and the wake call below.  If
         * the new thread is "slow" and holds the lock for a while, we'll
         * wake up a sleeper, which will swap in a 2 and then go back to
         * sleep since the lock is still held.  If the new thread is "fast",
         * running to completion before we call wake, the thread we
         * eventually wake will find an unlocked mutex and will execute.
         * Either way we have correct behavior and nobody is orphaned on
         * the wait queue.
         */
        __futex_wake_ex(&mutex->value, shared, 1);//唤醒等待的
    }
}
 


trylock

int pthread_mutex_trylock(pthread_mutex_t *mutex)
{
int mtype, tid, oldv, shared;

if (__unlikely(mutex == NULL))
return EINVAL;

mtype  = (mutex->value & MUTEX_TYPE_MASK);
shared = (mutex->value & MUTEX_SHARED_MASK);

/* Handle common case first */
if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
{
if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value) == 0) {
ANDROID_MEMBAR_FULL();
return 0;
}

return EBUSY;
}

/* Do we already own this recursive or error-check mutex ? */
tid = __get_thread()->kernel_id;
if ( tid == MUTEX_OWNER(mutex) )//当前thread已经持有mutex
{
int counter;

if (mtype == MUTEX_TYPE_ERRORCHECK) {
/* already locked by ourselves */
return EDEADLK;
}
//更新counter计数器
_recursive_lock();
oldv = mutex->value;
counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
_recursive_unlock();
return 0;
}

/* Restore sharing bit in mtype */
mtype |= shared;

/* Try to lock it, just once. */
_recursive_lock();
oldv = mutex->value;
if (oldv == mtype)  /* uncontended released lock => state 1 */
mutex->value = ((tid << 16) | mtype | 1);
_recursive_unlock();

if (oldv != mtype)
return EBUSY;

return 0;
}


timeout

int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
{
clockid_t        clock = CLOCK_MONOTONIC;
struct timespec  abstime;
struct timespec  ts;
int              mtype, tid, oldv, new_lock_type, shared;

/* compute absolute expiration time */
__timespec_to_relative_msec(&abstime, msecs, clock);

if (__unlikely(mutex == NULL))
return EINVAL;

mtype  = (mutex->value & MUTEX_TYPE_MASK);
shared = (mutex->value & MUTEX_SHARED_MASK);

/* Handle common case first */
if ( __likely(mtype == MUTEX_TYPE_NORMAL) )//normal的情况
{
/* fast path for uncontended lock */
if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value) == 0) {
ANDROID_MEMBAR_FULL();
return 0;
}
//在while循环中等待,直到超时或者获得mutex
/* loop while needed */
while (__atomic_swap(shared|2, &mutex->value) != (shared|0)) {
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
return EBUSY;

__futex_wait_ex(&mutex->value, shared, shared|2, &ts);
}
ANDROID_MEMBAR_FULL();
return 0;
}

/* Do we already own this recursive or error-check mutex ? */
tid = __get_thread()->kernel_id;
if ( tid == MUTEX_OWNER(mutex) )
{
int  oldv, counter;

if (mtype == MUTEX_TYPE_ERRORCHECK) {
/* already locked by ourselves */
return EDEADLK;
}

_recursive_lock();
oldv = mutex->value;
counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
_recursive_unlock();
return 0;
}

/* We don't own the mutex, so try to get it.
*
* First, we try to change its state from 0 to 1, if this
* doesn't work, try to change it to state 2.
*/
new_lock_type = 1;

/* Compute wait op and restore sharing bit in mtype */
mtype  |= shared;

//循环等待,直到超时
for (;;) {
int  oldv;
struct timespec  ts;

_recursive_lock();
oldv = mutex->value;
if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
mutex->value = ((tid << 16) | mtype | new_lock_type);
} else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
oldv ^= 3;
mutex->value = oldv;
}
_recursive_unlock();

if (oldv == mtype)
break;

/*
* The lock was held, possibly contended by others.  From
* now on, if we manage to acquire the lock, we have to
* assume that others are still contending for it so that
* we'll wake them when we unlock it.
*/
new_lock_type = 2;
//超时退出
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
return EBUSY;

__futex_wait_ex(&mutex->value, shared, oldv, &ts);
}
return 0;
}


 
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息