您的位置:首页 > 运维架构 > Linux

Android在标准linux基础上对休眠唤醒的实现(一)

2012-04-12 16:53 459 查看
说明:
1.
Based on linux 2.6.32 and android 2.2,only support SDR(mem).
2.
参考文章:
http://2695477.blog.51cto.com/blog/2685477/484751
http://www.docin.com/p-115475680.html
http://blogold.chinaunix.net/u3/113927/showart_2447111.html
http://www.cnmsdn.com/html/201003/1269407632ID2530.html

一、新增特性介绍

实际上,android仍然是利用了标准linux的休眠唤醒系统,只不过添加了一些使用上的新特性,early
suspend、late resume、wake lock。

Early suspend
- 这个机制定义了在suspend的早期,关闭显示屏的时候,一些和显示屏相关的设备,比如背光、重力感应器和触摸屏等设备都应该被关掉,但是此时系统可能还有持有wake
lock的任务在运行,如音乐播放,电话,或者扫描sd卡上的文件等,这个时候整个系统还不能进入真正睡眠,直到所有的wake
lock都没释放。在嵌入式设备中,悲观是一个很大的电源消耗,所有android加入了这种机制。

Late resume -
这个机制定义了在resume的后期,也就是唤醒源已经将处理器唤醒,标准linux的唤醒流程已经走完了,在android上层系统识别出这个物理上的唤醒源是上层定义的,那么上层将会发出late
resume的命令给下层,这个时候将会调用相关设备注册的late resume回调函数。

Wake lock - wakelock在android的电源管理系统中扮演一个核心的角色,wakelock是一种锁的机制,
只要有task拿着这个锁,
系统就无法进入休眠,
可以被用户态进程和内核线程获得。这个锁可以是有超时的或者是没有超时的,
超时的锁会在时间过去以后自动解锁。如果没有锁了或者超时了,
内核就会启动标准linux的那套休眠机制机制来进入休眠。

二、kernel层源码解析
- early suspend 和 late resume实现

相关源码:
kernel/kernel/power/main.c
kernel/kernel/power/earlysuspend.c
kernel/kernel/power/wakelock.c
kernel/kernel/power/userwakelock.c
kernel/kernel/power/suspend.c

之前标准的linux的sysfs的接口只需要一个state就够了,现在至少需要3个接口文件:state、wake_lock、wake_unlock。现在为了配合android为休眠唤醒添加的几种新特性,可以填入文件state的模式又多了一种:on,
标准android系统中只支持state的on和mem模式,其余的暂不支持。wake_lock和wake_unlock接口对应的读写函数在文件userwakelock.c中,对wakelock.c中的create
wakelock或者release wakelock进行了封装,供用户空间来使用。

如果上层用户执行:echo xxx(on or mem) > sys/power/state的话,将会调用到如下函数:
static ssize_t
state_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t n)
{
#ifdef CONFIG_SUSPEND
// set
#ifdef CONFIG_EARLYSUSPEND
//set

suspend_state_t state = PM_SUSPEND_ON;
// for early suspend and late resume
#else

suspend_state_t state = PM_SUSPEND_STANDBY;
#endif

const char * const *s;
#endif

char *p;

int len;

int error = -EINVAL;

p = memchr(buf, '/n', n);

len = p ? p - buf : n;

/* First, check if we are requested to hibernate */

if (len == 4 && !strncmp(buf, "disk", len)) {

error = hibernate(); //
检查是否要求进入disk省电模式,暂时不支持

goto Exit;

}

#ifdef CONFIG_SUSPEND
// def

for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {

if (*s && len == strlen(*s) && !strncmp(buf, *s, len))

break;

}

if (state < PM_SUSPEND_MAX && *s)
#ifdef
CONFIG_EARLYSUSPEND

if (state == PM_SUSPEND_ON || valid_state(state)) {
//
需要经过平台pm.c文件定义的模式支持检查函数,mtk只支持mem,同时如果是android发送出来的late
resume命令(on),这里也会放行,往下执行

error = 0;

request_suspend_state(state);
// android休眠唤醒的路线

}
#else

error = enter_state(state);//
标准linux休眠唤醒的路线
#endif
#endif

Exit:

return error ? error : n;
}

@ kernel/kernel/power/earlysuspend.c
enum {

DEBUG_USER_STATE = 1U << 0,

DEBUG_SUSPEND = 1U << 2,
};
int Earlysuspend_debug_mask = DEBUG_USER_STATE;
module_param_named(Earlysuspend_debug_mask, Earlysuspend_debug_mask, int, S_IRUGO | S_IWUSR
| S_IWGRP);

static DEFINE_MUTEX(early_suspend_lock);
static LIST_HEAD(early_suspend_handlers);
static void early_sys_sync(struct work_struct *work);
static void early_suspend(struct work_struct *work);
static void late_resume(struct work_struct *work);
static DECLARE_WORK(early_sys_sync_work, early_sys_sync);
static DECLARE_WORK(early_suspend_work, early_suspend);
static DECLARE_WORK(late_resume_work, late_resume);
static DEFINE_SPINLOCK(state_lock);
enum {

SUSPEND_REQUESTED = 0x1,

SUSPENDED = 0x2,

SUSPEND_REQUESTED_AND_SUSPENDED = SUSPEND_REQUESTED | SUSPENDED,
};
static int state;
// 初始化为0

static DECLARE_COMPLETION(fb_drv_ready);

void
request_suspend_state(suspend_state_t new_state)
{

unsigned long irqflags;

int old_sleep;

spin_lock_irqsave(&state_lock, irqflags);

old_sleep = state & SUSPEND_REQUESTED;
// state = 1 or 3
// state的值会在0->1->3->2->0循环变化,后面分析代码都可以看出这些值代表系统目前处于什么阶段,简单得说就是:正常->准备进early
suspend->开始early suspend并且对名为mian的wakelock解锁,如果此时没有其余wakelock处于lock状态,那么系统就走linux的休眠唤醒路线让整个系统真正休眠,直到唤醒源发生,然后将处理器和linux层唤醒。之后android层判断本次底层醒来是由于我所定义的唤醒源引起的吗?如果不是,android将不予理会,过段时间没有wakelock锁,系统会再次走linux的休眠路线进入休眠。如果是,那么android上层就会写一个on的指令到state接口中,同样是会调用到函数request_suspend_state()
->
准备执行late resume
-> 开始执行late resume,之后整个系统就这样被唤醒了。

if (Earlysuspend_debug_mask & DEBUG_USER_STATE) {

struct timespec ts; //
打印出debug信息

struct rtc_time tm;

getnstimeofday(&ts);

rtc_time_to_tm(ts.tv_sec, &tm);

pr_info("[request_suspend_state]: %s (%d->%d) at %lld "

"(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)/n",

new_state != PM_SUSPEND_ON ? "sleep" : "wakeup",

requested_suspend_state,
new_state,

ktime_to_ns(ktime_get()),

tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,

tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec);

}
// eg: [request_suspend_state]: sleep (0->3)
at 97985478409 (2010-01-03 09:52:59.637902305 UTC),
这里对时间的获取和处理,在其他地方可以参考

// ready to enter earlysuspend

if (!old_sleep && new_state != PM_SUSPEND_ON) {
// susepnd会进入这里

state |= SUSPEND_REQUESTED; // state = 1

pr_info("[request_suspend_state]:
sys_sync_work_queue early_sys_sync_work/n");

queue_work(sys_sync_work_queue, &early_sys_sync_work);

pr_info("[request_suspend_state]: suspend_work_queue early_suspend_work/n");

queue_work(suspend_work_queue, &early_suspend_work);
//
在wakelocks_init()函数(wakelock.c)中会创建这两个工作队列和工作者线程来专门负责处理sys_sync和early
suspend的工作。关于工作队列的详情参考我工作队列的文章

}

// ready to enter lateresume

else if (old_sleep && new_state == PM_SUSPEND_ON) {

state &= ~SUSPEND_REQUESTED; // state = 2

wake_lock(&main_wake_lock); // 对main wakelock上锁

pr_info("[request_suspend_state]: suspend_work_queue late_resume_work/n" );

if (queue_work(suspend_work_queue, &late_resume_work)) {

//
提交late resume的工作项

//

// In order to synchronize the backlight turn on timing,

// block the thread and wait for fb driver late_resume()

// callback function is completed

//

wait_for_completion(&fb_drv_ready);
//
等待完成量fb_drv_ready,他会在late
resume结束之后完成

}

}

requested_suspend_state = new_state;

//
存储本次休眠或者是唤醒的状态,供下次休眠或者唤醒使用

spin_unlock_irqrestore(&state_lock, irqflags);
}

在系统suspend的时候提交的两个工作项会陆续被执行到,那么下面就来看一下执行early
suspend的关键函数。
static void
early_sys_sync(struct work_struct *work)
{

wake_lock(&sys_sync_wake_lock);

printk("[sys_sync work] start/n");

sys_sync(); //
同步文件系统

printk("[sys_sync wrok] done/n");

wake_unlock(&sys_sync_wake_lock);
}

static void
early_suspend(struct work_struct *work)
{

struct early_suspend *pos;

unsigned long irqflags;

int abort = 0;

mutex_lock(&early_suspend_lock);

spin_lock_irqsave(&state_lock, irqflags);

if (state == SUSPEND_REQUESTED)

state |= SUSPENDED; // state = 3

else

abort = 1;

spin_unlock_irqrestore(&state_lock, irqflags);

if (abort) { // suspend
中止退出

if (Earlysuspend_debug_mask & DEBUG_SUSPEND)

pr_info("[early_suspend]: abort, state %d/n", state);

mutex_unlock(&early_suspend_lock);

goto abort;

}

if (Earlysuspend_debug_mask & DEBUG_SUSPEND)

pr_info("[early_suspend]: call handlers/n");

list_for_each_entry(pos, &early_suspend_handlers, link) {

if (pos->suspend != NULL)

pos->suspend(pos);

}
//
函数register_early_suspend()会将每一个early
suspend项以优先级大小注册到链表early_suspend_handlers中,这里就是一次取出,然后执行对应的early
suspend回调函数

mutex_unlock(&early_suspend_lock);

// Remove sys_sync from early_suspend,

// and use work queue to complete sys_sync

abort:

spin_lock_irqsave(&state_lock, irqflags);

if (state == SUSPEND_REQUESTED_AND_SUSPENDED)

{

pr_info("[early_suspend]: wake_unlock(main)/n");

wake_unlock(&main_wake_lock);
// main wakelock
解锁。看到这里,好像系统执行了early suspend之后就没有往下执行标准linux的suspend流程了,其实不是,android的做法是,不是你执行完了early
suspend 的回调就可以马上走标准linux的suspend流程,而是会检查还有没有wakelock被持有,如果所有wakelock全是解锁状态,那么就会执行标准linux的suspend步骤。
}

spin_unlock_irqrestore(&state_lock, irqflags);
}

static void
late_resume(struct work_struct *work)
{

struct early_suspend *pos;

unsigned long irqflags;

int abort = 0;

int completed = 0;

mutex_lock(&early_suspend_lock);

spin_lock_irqsave(&state_lock, irqflags);

// return back from suspend

if (state == SUSPENDED)

state &= ~SUSPENDED;
// state = 0

else

abort = 1;

spin_unlock_irqrestore(&state_lock, irqflags);

if (abort) {

if (Earlysuspend_debug_mask & DEBUG_SUSPEND)

pr_info("[late_resume]: abort, state %d/n", state);

goto abort;

}

if (Earlysuspend_debug_mask & DEBUG_SUSPEND)

pr_info("[late_resume]: call handlers/n");

list_for_each_entry_reverse(pos, &early_suspend_handlers, link)

{

if (!completed && pos->level < EARLY_SUSPEND_LEVEL_DISABLE_FB) {

complete(&fb_drv_ready);

completed = 1;

}

if (pos->resume != NULL)

pos->resume(pos);

}
//
以和early suspend的逆序执行链表early_suspend_handlers上的late
resume回调函数
if (Earlysuspend_debug_mask & DEBUG_SUSPEND)

pr_info("[late_resume]: done/n");
abort:

if (!completed)

complete(&fb_drv_ready); //
设置完成量ok

mutex_unlock(&early_suspend_lock);
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: