您的位置:首页 > 其它

ALSA之CODEC分析

2012-01-11 17:54 363 查看
最近在调试alsa-soc 的驱动,下面转载的几篇文章对这些问题都有很详细的讲解,

转载自: http://blog.csdn.net/sepnic/article/details/6140911

ALSA: Advanced Linux Sound Architecture,它包括内核驱动集合、API库和工具。用户层程序直接调用libsound的API库,不需要打开设备等操作,因此编程者不需要了解底层细节。

这里不分析ALSA的核心代码core,也不阐述如何在用户层进行声卡编程,仅仅简要介绍在ALSA的架构上添加一个声卡驱动,即上图中的Sound Driver。其实文档《wirte an alsa driver》很详尽的介绍如何写一个ALSA驱动,但是那是以PCI声卡为例的。在嵌入式中,音频数据传输一般用I2S接口,控制一般用I2c或SPI接口。如下仅以嵌入式声卡为例,其驱动代码一般放在sound/soc下面。

以数据结构为线索,简要解析其过程。每个重要结构体旁边有个类似的标号[XX],[xx]为[0]时,表明这个结构体是一个大类,包含标号为[1]的结构体……;[xx]为[EXT]时,表明该结构体不在本模块使用。

CODEC

驱动代码位于sound/soc/codec下,如uda134x.c。

struct snd_soc_dai [0]

[cpp]
view plaincopyprint?

/*
* Digital Audio Interface runtime data.
*
* Holds runtime data for a DAI.
*/
struct snd_soc_dai {
/* DAI description */
char *name;
unsigned int id;
int ac97_control;

struct device *dev;
void *ac97_pdata; /* platform_data for the ac97 codec */

/* DAI callbacks */
int (*probe)(struct platform_device *pdev,
struct snd_soc_dai *dai);
void (*remove)(struct platform_device *pdev,
struct snd_soc_dai *dai);
int (*suspend)(struct snd_soc_dai *dai);
int (*resume)(struct snd_soc_dai *dai);

/* ops */
struct snd_soc_dai_ops *ops;

/* DAI capabilities */
struct snd_soc_pcm_stream capture;
struct snd_soc_pcm_stream playback;
unsigned int symmetric_rates:1;

/* DAI runtime info */
struct snd_pcm_runtime *runtime;
struct snd_soc_codec *codec;
unsigned int active;
unsigned char pop_wait:1;
void *dma_data;

/* DAI private data */
void *private_data;

/* parent platform */
struct snd_soc_platform *platform;

struct list_head list;
};

[cpp]
view plaincopyprint?

struct snd_soc_dai uda134x_dai = {

.name = "UDA134X",

/* playback capabilities */

.playback = {
.stream_name = "Playback",

.channels_min = 1,
.channels_max = 2,
.rates = UDA134X_RATES,
.formats = UDA134X_FORMATS,
},
/* capture capabilities */

.capture = {
.stream_name = "Capture",

.channels_min = 1,
.channels_max = 2,
.rates = UDA134X_RATES,
.formats = UDA134X_FORMATS,
},
/* pcm operations */

.ops = &uda134x_dai_ops,
};

struct snd_soc_dai uda134x_dai = {
.name = "UDA134X",
/* playback capabilities */
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = UDA134X_RATES,
.formats = UDA134X_FORMATS,
},
/* capture capabilities */
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = UDA134X_RATES,
.formats = UDA134X_FORMATS,
},
/* pcm operations */
.ops = &uda134x_dai_ops,
};

小结:以上的结构体看起来复杂,实现上基本结构是非常简单易懂的。所要做的工作有:

1/定义snd_soc_dai和snd_soc_dai_ops这两个结构体,前者设置好capture & playback的参数和声卡函数操作集合指针,该指针指向snd_soc_dai_ops结构体;

2/根据硬件数据手册编写相关操作函数如hw_params、set_fmt和digital_mute等;

3/编写模块初始化函数uda134x_init(),调用snd_soc_register_dai()注册之前定义好的snd_soc_dai。

注:关于2的相关操作函数,之前也提过控制一般用I2C或SPI接口的。但是在操作函数里,我们可以使用codec->hw_write()来操作。当然在probe函数中,hw_write是在probe初始化好的,如codec->hw_write = (hw_write_t)i2c_master_send;,这就使得控制接口抽象起来。

struct snd_soc_codec_device [EXT]

接下来有一个结构体snd_soc_codec_device要留意的,一般来说,这个结构体是在codec下定义,但是注册操作是在另外一个文件中进行的,以2410的UDA134X为例是在sound/soc/s3c24xx/s3c24xx_uda134x.c。这些留到以后分析,这里只是需要将这个结构体EXPORT出来就行了如:EXPORT_SYMBOL_GPL(soc_codec_dev_uda134x);。

先看snd_soc_codec_device结构体定义:

[cpp]
view plaincopyprint?

/* codec device */

struct snd_soc_codec_device {

int (*probe)(struct platform_device *pdev);

int (*remove)(struct platform_device *pdev);

int (*suspend)(struct platform_device *pdev, pm_message_t state);

int (*resume)(struct platform_device *pdev);

};

[cpp]
view plaincopyprint?

static int uda134x_soc_probe(struct platform_device *pdev)

{
//获得snd_soc_device结构体

struct snd_soc_device *socdev = platform_get_drvdata(pdev);

struct snd_soc_codec *codec;

…
//为codec分配内存

socdev->card->codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);

if (socdev->card->codec == NULL)

return ret;

codec = socdev->card->codec;

…

//初始化codec
codec->name = "uda134x";

codec->owner = THIS_MODULE;
codec->dai = &uda134x_dai; //指向上面定义好的dai

codec->num_dai = 1;
codec->read = uda134x_read_reg_cache; //控制接口—读

codec->write = uda134x_write;         //控制接口—写

…

mutex_init(&codec->mutex);
INIT_LIST_HEAD(&codec->dapm_widgets);
INIT_LIST_HEAD(&codec->dapm_paths);

…

/* register pcms */

ret = snd_soc_new_pcms(socdev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1);

…

ret = snd_soc_add_controls(codec, uda134x_snd_controls,

ARRAY_SIZE(uda134x_snd_controls));

…

/* register card */

ret = snd_soc_init_card(socdev);
}

static int uda134x_soc_probe(struct platform_device *pdev)
{
//获得snd_soc_device结构体
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_codec *codec;
…
//为codec分配内存
socdev->card->codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
if (socdev->card->codec == NULL)
return ret;

codec = socdev->card->codec;

…

//初始化codec
codec->name = "uda134x";
codec->owner = THIS_MODULE;
codec->dai = &uda134x_dai; //指向上面定义好的dai
codec->num_dai = 1;
codec->read = uda134x_read_reg_cache; //控制接口—读
codec->write = uda134x_write;         //控制接口—写

…

mutex_init(&codec->mutex);
INIT_LIST_HEAD(&codec->dapm_widgets);
INIT_LIST_HEAD(&codec->dapm_paths);

…

/* register pcms */
ret = snd_soc_new_pcms(socdev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1);

…

ret = snd_soc_add_controls(codec, uda134x_snd_controls,
ARRAY_SIZE(uda134x_snd_controls));

…

/* register card */
ret = snd_soc_init_card(socdev);
}

开始看到socdev = platform_get_drvdata(pdev)这句不免有点疑惑,到底pdev是在哪里初始化好了?答案是sound/soc/<SOC>目录下的文件中,如sound/soc/s3c24xx/s3c24xx_uda134x.c。在声卡的初始化过程中,其实首先是调用sound/soc/<SOC>下的相关驱动的probe函数,在probe有platform_set_drvdata()的操作,这里有个将指针类型的转换:(struct snd_soc_device *s) ==> (struct
platform_device *)。

snd_soc_add_controls()将操作集合挂到card->control链表上来,这个集合实现了音频播放时各个参数的设置,主要有.info、.get和.set。如playback volume control:SOC_DOUBLE_R_TLV("Playback Volume", SNDCARD_REG_L_GAIN, SNDCARD_REG_R_GAIN, 0, 192, 0, digital_tlv),其中SNDCARD_REG_L_GAIN和SNDCARD_REG_R_GAIN分别是左右声道音量增益寄存器偏移。最终要调用的函数都是在soc-core.c里面的,这里只是提供一些跟硬件相关的参数,大为增加了代码的复用性。

对于函数snd_soc_new_pcms()是这样描述的:Create a new sound card based upon the codec and interface pcms.这个函数非常重要,用于创建一个PCM实例以便播放数据流。函数里重要的是如下两句:

[cpp]
view plaincopyprint?

ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);

ret = soc_new_pcm(socdev, &card->dai_link[i], i);

[cpp]
view plaincopyprint?

/* SoC Device - the audio subsystem */

struct snd_soc_device {

struct device *dev;

struct snd_soc_card *card;

struct snd_soc_codec_device *codec_dev;

void *codec_data;

};

/* SoC Device - the audio subsystem */
struct snd_soc_device {
struct device *dev;
struct snd_soc_card *card;
struct snd_soc_codec_device *codec_dev;
void *codec_data;
};
这个结构体用于向内核注册一个device。初始化一般如下:

[cpp]
view plaincopyprint?

static struct snd_soc_device SOC_SNDCARD_snd_devdata = {

.card = &snd_soc_s3c24xx_uda134x,
.codec_dev = &soc_codec_dev_uda134x,//就是CODEC定义的snd_soc_codec_device结构体

.codec_data = &s3c24xx_uda134x, //私有数据,一般存放SNDCARD控制接口信息,如I2C从设备地址等

};

[cpp]
view plaincopyprint?

static int s3c24xx_uda134x_probe(struct platform_device *pdev)

{
s3c24xx_uda134x_snd_devdata.codec_dev = &soc_codec_dev_uda134x;

s3c24xx_uda134x_snd_device = platform_device_alloc("soc-audio", -1);

platform_set_drvdata(s3c24xx_uda134x_snd_device,

& s3c24xx_uda134x_snd_devdata);
s3c24xx_uda134x_snd_devdata.dev = & s3c24xx_uda134x_snd_device->dev;

platform_device_add(s3c24xx_uda134x_snd_device);
}

static int s3c24xx_uda134x_probe(struct platform_device *pdev)
{
s3c24xx_uda134x_snd_devdata.codec_dev = &soc_codec_dev_uda134x;
s3c24xx_uda134x_snd_device = platform_device_alloc("soc-audio", -1);
platform_set_drvdata(s3c24xx_uda134x_snd_device,
& s3c24xx_uda134x_snd_devdata);
s3c24xx_uda134x_snd_devdata.dev = & s3c24xx_uda134x_snd_device->dev;
platform_device_add(s3c24xx_uda134x_snd_device);
}

可以看到CODEC定义的struct snd_soc_codec_device soc_codec_dev_uda134x在这里进行platform_device_add的,随后便执行soc_codec_dev_uda134x.probe,其过程可以复习CODEC中的uda134x_soc_probe()。

接下来是s3c24xx_uda134x_snd_devdata.card的来历。

struct snd_soc_card [1]

[cpp]
view plaincopyprint?

/* SoC card */

struct snd_soc_card {

char *name;

struct device *dev;

struct list_head list;

int instantiated;

int (*probe)(struct platform_device *pdev);

int (*remove)(struct platform_device *pdev);

/* the pre and post PM functions are used to do any PM work before and

* after the codec and DAI's do any PM work. */

int (*suspend_pre)(struct platform_device *pdev, pm_message_t state);

int (*suspend_post)(struct platform_device *pdev, pm_message_t state);

int (*resume_pre)(struct platform_device *pdev);

int (*resume_post)(struct platform_device *pdev);

/* callbacks */
int (*set_bias_level)(struct snd_soc_card *,

enum snd_soc_bias_level level);

/* CPU <--> Codec DAI links */

struct snd_soc_dai_link *dai_link;

int num_links;

struct snd_soc_device *socdev;

struct snd_soc_codec *codec;

struct snd_soc_platform *platform;

struct delayed_work delayed_work;

struct work_struct deferred_resume_work;

};

[cpp]
view plaincopyprint?

static struct snd_soc_card snd_soc_s3c24xx_uda134x = {

.name = "S3C24XX_UDA134X",

.platform = &s3c24xx_soc_platform,
.dai_link = &s3c24xx_uda134x_dai_link,
.num_links = 1,
};

static struct snd_soc_card snd_soc_s3c24xx_uda134x = {
.name = "S3C24XX_UDA134X",
.platform = &s3c24xx_soc_platform,
.dai_link = &s3c24xx_uda134x_dai_link,
.num_links = 1,
};

s3c24xx_soc_platform是定义在PCM中的,包含一系列pcm_ops操作函数集合等信息,这里不谈。成员.dai_link是本模块中的另外一个主角。

struct snd_soc_dai_link [2]

[cpp]
view plaincopyprint?

/* SoC machine DAI configuration, glues a codec and cpu DAI together */

struct snd_soc_dai_link {

char *name; /* Codec name */

char *stream_name; /* Stream name */

/* DAI */
struct snd_soc_dai *codec_dai;

struct snd_soc_dai *cpu_dai;

/* machine stream operations */

struct snd_soc_ops *ops;

/* codec/machine specific init - e.g. add machine controls */

int (*init)(struct snd_soc_codec *codec);

/* Symmetry requirements */

unsigned int symmetric_rates:1;

/* Symmetry data - only valid if symmetry is being enforced */

unsigned int rate;

/* DAI pcm */
struct snd_pcm *pcm;

};

[cpp]
view plaincopyprint?

/* SoC audio ops */

struct snd_soc_ops {

int (*startup)(struct snd_pcm_substream *);

void (*shutdown)(struct snd_pcm_substream *);

int (*hw_params)(struct snd_pcm_substream *, struct snd_pcm_hw_params *);

int (*hw_free)(struct snd_pcm_substream *);

int (*prepare)(struct snd_pcm_substream *);

int (*trigger)(struct snd_pcm_substream *, int);

};

/* SoC audio ops */
struct snd_soc_ops {
int (*startup)(struct snd_pcm_substream *);
void (*shutdown)(struct snd_pcm_substream *);
int (*hw_params)(struct snd_pcm_substream *, struct snd_pcm_hw_params *);
int (*hw_free)(struct snd_pcm_substream *);
int (*prepare)(struct snd_pcm_substream *);
int (*trigger)(struct snd_pcm_substream *, int);
};
在这里,一般需要实现.hw_paras、.startup和.shutdown,这些均是对pcm substream进行操作的。例如在s3c24xx_soc_hw_params()中,有:

[cpp]
view plaincopyprint?

snd_soc_dai_set_fmt(cpu_dai, SND_SOC_DAIFMT_I2S);//设置为I2S mode

snd_soc_dai_set_sysclk(codec_dai, 0, 11289600, SND_SOC_CLOCK_IN);//设置主时钟MCLK频率

snd_soc_dai_set_fmt(cpu_dai, SND_SOC_DAIFMT_I2S);//设置为I2S mode
snd_soc_dai_set_sysclk(codec_dai, 0, 11289600, SND_SOC_CLOCK_IN);//设置主时钟MCLK频率
注:如果留意到CODEC小结中的2/,那么就会明白,在这里定义的操作最终会调用到CODEC(或许还有PCM、I2S中的)里定义好的set_fmt、set_sysclk等回调函数。

小结:这一层的重要的结构体是一脉相承的,并没有复杂的分支,除了codec_dev是从CODEC Export过来,platform从PCM Export过来,cpu_dai从I2S Export过来。函数主要是module_init()和一个snd_soc_ops操作函数集合。这一层负责将音频设备的几部分模块与CPU平台挂起来。

注:底层硬件操作—

CODEC:控制接口及芯片基本初始化

PCM:pcm dma操作

I2S:i2s配置操作

之后i2s和pcm其实都跟codec差不多了,只需要理解alsa-core、<soc>、<codec、pcm、i2s>三层的关系。其中codec、pcm、i2s可以看做同层的,分别对于音频设备的control、dma、i2s接口;<codec、pcm、i2s>会分别export相关结构体给<soc>层,<soc>层将音频设备三部分与CPU Spec联结起来,其probe顺序是<SOC>.probe-><codec, pcm, i2s>.probe;另外<codec、pcm、i2s>在各自的module_init中将自身注册到alsa-core中。

有空再写一些pcm dma方面的。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: