您的位置:首页 > 理论基础 > 计算机网络

Memcached源代码阅读(3) 网络通信

2011-12-06 21:30 417 查看
if (!(listen_conn = conn_new(l_socket, conn_listening,
EV_READ | EV_PERSIST, 1, false, main_base)))
conn *conn_new(const int sfd, const int init_state, const int event_flags,
const int read_buffer_size, const bool is_udp, struct event_base *base) {
conn *c = conn_from_freelist();

if (NULL == c) {
if (!(c = (conn *)malloc(sizeof(conn)))) {
perror("malloc()");
return NULL;
}
c->rbuf = c->wbuf = 0;
c->ilist = 0;
c->suffixlist = 0;
c->iov = 0;
c->msglist = 0;
c->hdrbuf = 0;

c->rsize = read_buffer_size;
c->wsize = DATA_BUFFER_SIZE;
c->isize = ITEM_LIST_INITIAL;
c->suffixsize = SUFFIX_LIST_INITIAL;
c->iovsize = IOV_LIST_INITIAL;
c->msgsize = MSG_LIST_INITIAL;
c->hdrsize = 0;

c->rbuf = (char *)malloc((size_t)c->rsize);
c->wbuf = (char *)malloc((size_t)c->wsize);
c->ilist = (item **)malloc(sizeof(item *) * c->isize);
c->suffixlist = (char **)malloc(sizeof(char *) * c->suffixsize);
c->iov = (struct iovec *)malloc(sizeof(struct iovec) * c->iovsize);
c->msglist = (struct msghdr *)malloc(sizeof(struct msghdr) * c->msgsize);

if (c->rbuf == 0 || c->wbuf == 0 || c->ilist == 0 || c->iov == 0 ||
c->msglist == 0 || c->suffixlist == 0) {
if (c->rbuf != 0) free(c->rbuf);
if (c->wbuf != 0) free(c->wbuf);
if (c->ilist !=0) free(c->ilist);
if (c->suffixlist != 0) free(c->suffixlist);
if (c->iov != 0) free(c->iov);
if (c->msglist != 0) free(c->msglist);
free(c);
perror("malloc()");
return NULL;
}

STATS_LOCK();
stats.conn_structs++;
STATS_UNLOCK();
}

if (settings.verbose > 1) {
if (init_state == conn_listening)
fprintf(stderr, "<%d server listening\n", sfd);
else if (is_udp)
fprintf(stderr, "<%d server listening (udp)\n", sfd);
else
fprintf(stderr, "<%d new client connection\n", sfd);
}

c->sfd = sfd;
c->udp = is_udp;
c->state = init_state;
c->rlbytes = 0;
c->rbytes = c->wbytes = 0;
c->wcurr = c->wbuf;
c->rcurr = c->rbuf;
c->ritem = 0;
c->icurr = c->ilist;
c->suffixcurr = c->suffixlist;
c->ileft = 0;
c->suffixleft = 0;
c->iovused = 0;
c->msgcurr = 0;
c->msgused = 0;

c->write_and_go = conn_read;
c->write_and_free = 0;
c->item = 0;
c->bucket = -1;
c->gen = 0;

event_set(&c->event, sfd, event_flags, event_handler, (void *)c);
event_base_set(base, &c->event);
c->ev_flags = event_flags;

if (event_add(&c->event, 0) == -1) {
if (conn_add_to_freelist(c)) {
conn_free(c);
}
return NULL;
}

STATS_LOCK();
stats.curr_conns++;
stats.total_conns++;
STATS_UNLOCK();

return c;
}
telnet 127.0.0.1 11211
当有新的链接进来时event_handler被调用
void event_handler(const int fd, const short which, void *arg) {
conn *c;

c = (conn *)arg;
assert(c != NULL);

c->which = which;

/* sanity */
if (fd != c->sfd) {
if (settings.verbose > 0)
fprintf(stderr, "Catastrophic: event fd doesn't match conn fd!\n");
conn_close(c);
return;
}

drive_machine(c);

/* wait for next event */
return;
}

drive_machine()
处理以下连接状态
conn_listening 监听socket连接
conn_read 读取请求
conn_nread 从客户端读取固定长度的数据
conn_write 向客户端写入response
conn_mwrite 向客户端写入items
conn_swallow 连接异常时输出一些错误消息
conn_closing 关闭这次连接

static void drive_machine(conn *c) {
bool stop = false;
int sfd, flags = 1;
socklen_t addrlen;
struct sockaddr addr;
int res;

assert(c != NULL);

while (!stop) {

switch(c->state) {
case conn_listening:
addrlen = sizeof(addr);
if ((sfd = accept(c->sfd, &addr, &addrlen)) == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
/* these are transient, so don't log anything */
stop = true;
} else if (errno == EMFILE) {
if (settings.verbose > 0)
fprintf(stderr, "Too many open connections\n");
accept_new_conns(false);
stop = true;
} else {
perror("accept()");
stop = true;
}
break;
}
if ((flags = fcntl(sfd, F_GETFL, 0)) < 0 ||
fcntl(sfd, F_SETFL, flags | O_NONBLOCK) < 0) {
perror("setting O_NONBLOCK");
close(sfd);
break;
}
dispatch_conn_new(sfd, conn_read, EV_READ | EV_PERSIST,
DATA_BUFFER_SIZE, false);
break;

case conn_read:
...
}
}

return;
}
dispatch_conn_new(sfd, conn_read, EV_READ | EV_PERSIST,
DATA_BUFFER_SIZE, false);
# define dispatch_conn_new(x,y,z,a,b) conn_new(x,y,z,a,b,main_base)
dispatch_conn_new 仍然是一个新的连接
dispatch_conn_new(sfd, conn_read, EV_READ | EV_PERSIST,
DATA_BUFFER_SIZE, false);
conn *conn_new(const int sfd, const int init_state, const int event_flags,
const int read_buffer_size, const bool is_udp, struct event_base *base)

这个新的连接仍然使用event_handler
event_handler就是一个状态机。
新建立的客户端连接处于conn_read状态,
而原有的侦听连接处于listening状态。

在telnet终端中输入命令stats
这时候进入conn_read分支
static void drive_machine(conn *c) {
bool stop = false;
int sfd, flags = 1;
socklen_t addrlen;
struct sockaddr addr;
int res;

assert(c != NULL);

while (!stop) {

switch(c->state) {

case conn_read:
if (try_read_command(c) != 0) {
continue;
}
if ((c->udp ? try_read_udp(c) : try_read_network(c)) != 0) {
continue;
}
/* we have no command line and no data to read from network */
if (!update_event(c, EV_READ | EV_PERSIST)) {
if (settings.verbose > 0)
fprintf(stderr, "Couldn't update event\n");
conn_set_state(c, conn_closing);
break;
}
stop = true;
break;

return;
}

try_read_command()
进入命令解析阶段
if (try_read_command(c) != 0) {
continue;
}

static int try_read_command(conn *c) {
char *el, *cont;

assert(c != NULL);
assert(c->rcurr <= (c->rbuf + c->rsize));

if (c->rbytes == 0)
return 0;
el = memchr(c->rcurr, '\n', c->rbytes);
if (!el)
return 0;
cont = el + 1;
if ((el - c->rcurr) > 1 && *(el - 1) == '\r') {
el--;
}
*el = '\0';

assert(cont <= (c->rcurr + c->rbytes));

process_command(c, c->rcurr);

c->rbytes -= (cont - c->rcurr);
c->rcurr = cont;

assert(c->rcurr <= (c->rbuf + c->rsize));

return 1;
}
try_read_command()的作用就是找到命令行的结尾,如果找到行末尾,就调用process_command(c, c->rcurr);处理这行命令。
否则返回0,返回0后,则调用try_read_network获取网络数据。

static int try_read_network(conn *c) {
int gotdata = 0;
int res;

assert(c != NULL);

if (c->rcurr != c->rbuf) {
if (c->rbytes != 0) /* otherwise there's nothing to copy */
memmove(c->rbuf, c->rcurr, c->rbytes);
c->rcurr = c->rbuf;
}

while (1) {
if (c->rbytes >= c->rsize) {
char *new_rbuf = realloc(c->rbuf, c->rsize * 2);
if (!new_rbuf) {
if (settings.verbose > 0)
fprintf(stderr, "Couldn't realloc input buffer\n");
c->rbytes = 0; /* ignore what we read */
out_string(c, "SERVER_ERROR out of memory");
c->write_and_go = conn_closing;
return 1;
}
c->rcurr = c->rbuf = new_rbuf;
c->rsize *= 2;
}

/* unix socket mode doesn't need this, so zeroed out. but why
* is this done for every command? presumably for UDP
* mode. */
if (!settings.socketpath) {
c->request_addr_size = sizeof(c->request_addr);
} else {
c->request_addr_size = 0;
}

res = read(c->sfd, c->rbuf + c->rbytes, c->rsize - c->rbytes);
if (res > 0) {
STATS_LOCK();
stats.bytes_read += res;
STATS_UNLOCK();
gotdata = 1;
c->rbytes += res;
continue;
}
if (res == 0) {
/* connection closed */
conn_set_state(c, conn_closing);
return 1;
}
if (res == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) break;
else return 0;
}
}
return gotdata;
}

res = read(c->sfd, c->rbuf + c->rbytes, c->rsize - c->rbytes);
if (res == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) break;
这里判断返回
因为这里的socket都是非阻塞的,EAGAIN 和EWOULDBLOCK都不算严重错误, 因此如果出错应该重新读取。

EWOULDBLOCK的意思是如果你不把socket设成非阻塞(即阻塞)模式时,这个读操作将阻塞,也就是说数据还未准备好(但系统知道数据来了,所以select告诉你那个socket可读)。使用非阻塞模式做I/O操作的细心的人会检查errno是不是EAGAIN、EWOULDBLOCK、EINTR,如果是就应该重读,一般是用循环。如果你不是一定要用非阻塞就不要设成这样,这就是为什么系统的默认模式是阻塞。
当没有网络数据也没有换行的时候调用update_event,结束driver_machine

if (!update_event(c, EV_READ | EV_PERSIST)) {
if (settings.verbose > 0)
fprintf(stderr, "Couldn't update event\n");
conn_set_state(c, conn_closing);
break;
}
stop = true;

输入命令stats,
try_read_command 读取成功后,进入process_command处理命令
static void process_command(conn *c, char *command) {

token_t tokens[MAX_TOKENS];
size_t ntokens;
int comm;

assert(c != NULL);

if (settings.verbose > 1)
fprintf(stderr, "<%d %s\n", c->sfd, command);

/*
* for commands set/add/replace, we build an item and read the data
* directly into it, then continue in nread_complete().
*/

c->msgcurr = 0;
c->msgused = 0;
c->iovused = 0;
if (add_msghdr(c) != 0) {
out_string(c, "SERVER_ERROR out of memory");
return;
}

ntokens = tokenize_command(command, tokens, MAX_TOKENS);
if (ntokens >= 3 &&
((strcmp(tokens[COMMAND_TOKEN].value, "get") == 0) ||
(strcmp(tokens[COMMAND_TOKEN].value, "bget") == 0))) {

process_get_command(c, tokens, ntokens, false);

} else if (ntokens == 6 &&
((strcmp(tokens[COMMAND_TOKEN].value, "add") == 0 && (comm = NREAD_ADD)) ||
(strcmp(tokens[COMMAND_TOKEN].value, "set") == 0 && (comm = NREAD_SET)) ||
(strcmp(tokens[COMMAND_TOKEN].value, "replace") == 0 && (comm = NREAD_REPLACE)) ||
(strcmp(tokens[COMMAND_TOKEN].value, "prepend") == 0 && (comm = NREAD_PREPEND)) ||
(strcmp(tokens[COMMAND_TOKEN].value, "append") == 0 && (comm = NREAD_APPEND)) )) {

process_update_command(c, tokens, ntokens, comm, false);

} else if (ntokens == 7 && (strcmp(tokens[COMMAND_TOKEN].value, "cas") == 0 && (comm = NREAD_CAS))) {

process_update_command(c, tokens, ntokens, comm, true);

} else if (ntokens == 4 && (strcmp(tokens[COMMAND_TOKEN].value, "incr") == 0)) {

process_arithmetic_command(c, tokens, ntokens, 1);

} else if (ntokens >= 3 && (strcmp(tokens[COMMAND_TOKEN].value, "gets") == 0)) {

process_get_command(c, tokens, ntokens, true);

} else if (ntokens == 4 && (strcmp(tokens[COMMAND_TOKEN].value, "decr") == 0)) {

process_arithmetic_command(c, tokens, ntokens, 0);

} else if (ntokens >= 3 && ntokens <= 4 && (strcmp(tokens[COMMAND_TOKEN].value, "delete") == 0)) {

process_delete_command(c, tokens, ntokens);

} else if (ntokens == 3 && strcmp(tokens[COMMAND_TOKEN].value, "own") == 0) {
unsigned int bucket, gen;
if (!settings.managed) {
out_string(c, "CLIENT_ERROR not a managed instance");
return;
}

if (sscanf(tokens[1].value, "%u:%u", &bucket,&gen) == 2) {
if ((bucket < 0) || (bucket >= MAX_BUCKETS)) {
out_string(c, "CLIENT_ERROR bucket number out of range");
return;
}
buckets[bucket] = gen;
out_string(c, "OWNED");
return;
} else {
out_string(c, "CLIENT_ERROR bad format");
return;
}

} else if (ntokens == 3 && (strcmp(tokens[COMMAND_TOKEN].value, "disown")) == 0) {

int bucket;
if (!settings.managed) {
out_string(c, "CLIENT_ERROR not a managed instance");
return;
}
if (sscanf(tokens[1].value, "%u", &bucket) == 1) {
if ((bucket < 0) || (bucket >= MAX_BUCKETS)) {
out_string(c, "CLIENT_ERROR bucket number out of range");
return;
}
buckets[bucket] = 0;
out_string(c, "DISOWNED");
return;
} else {
out_string(c, "CLIENT_ERROR bad format");
return;
}

} else if (ntokens == 3 && (strcmp(tokens[COMMAND_TOKEN].value, "bg")) == 0) {
int bucket, gen;
if (!settings.managed) {
out_string(c, "CLIENT_ERROR not a managed instance");
return;
}
if (sscanf(tokens[1].value, "%u:%u", &bucket, &gen) == 2) {
/* we never write anything back, even if input's wrong */
if ((bucket < 0) || (bucket >= MAX_BUCKETS) || (gen <= 0)) {
/* do nothing, bad input */
} else {
c->bucket = bucket;
c->gen = gen;
}
conn_set_state(c, conn_read);
return;
} else {
out_string(c, "CLIENT_ERROR bad format");
return;
}

} else if (ntokens >= 2 && (strcmp(tokens[COMMAND_TOKEN].value, "stats") == 0)) {

process_stat(c, tokens, ntokens);

} else if (ntokens >= 2 && ntokens <= 3 && (strcmp(tokens[COMMAND_TOKEN].value, "flush_all") == 0)) {
time_t exptime = 0;
set_current_time();

if(ntokens == 2) {
settings.oldest_live = current_time - 1;
item_flush_expired();
out_string(c, "OK");
return;
}

exptime = strtol(tokens[1].value, NULL, 10);
if(errno == ERANGE) {
out_string(c, "CLIENT_ERROR bad command line format");
return;
}

settings.oldest_live = realtime(exptime) - 1;
item_flush_expired();
out_string(c, "OK");
return;

} else if (ntokens == 2 && (strcmp(tokens[COMMAND_TOKEN].value, "version") == 0)) {

out_string(c, "VERSION " VERSION);

} else if (ntokens == 2 && (strcmp(tokens[COMMAND_TOKEN].value, "quit") == 0)) {

conn_set_state(c, conn_closing);

} else if (ntokens == 5 && (strcmp(tokens[COMMAND_TOKEN].value, "slabs") == 0 &&
strcmp(tokens[COMMAND_TOKEN + 1].value, "reassign") == 0)) {
#ifdef ALLOW_SLABS_REASSIGN

#else
out_string(c, "CLIENT_ERROR Slab reassignment not supported");
#endif
} else if (ntokens == 3 && (strcmp(tokens[COMMAND_TOKEN].value, "verbosity") == 0)) {
process_verbosity_command(c, tokens, ntokens);
} else {
out_string(c, "ERROR");
}
return;
}
tokenize_command(char *command, token_t *tokens, const size_t max_tokens)
把命令分解成一个个终止符,把空格替换成\0。
typedef struct token_s {
char *value;
size_t length;
} token_t;
每个token结构如上,包括一个token的字符串和长度。
stats\n命令解析后如下
- tokens 0x0018f8b0 {value=0x005a4fd0 "stats" length=5 } token_s [7]
+ [0] {value=0x005a4fd0 "stats" length=5 } token_s
+ [1] {value=0x00000000 <错误的指针> length=0 } token_s
然后process_command进入分支
(ntokens >= 2 && (strcmp(tokens[COMMAND_TOKEN].value, "stats") == 0)) {

process_stat(c, tokens, ntokens);

}

static void process_stat(conn *c, token_t *tokens, const size_t ntokens) {
rel_time_t now = current_time;
char *command;
char *subcommand;

assert(c != NULL);

if(ntokens < 2) {
out_string(c, "CLIENT_ERROR bad command line");
return;
}

command = tokens[COMMAND_TOKEN].value;

if (ntokens == 2 && strcmp(command, "stats") == 0) {
char temp[1024];
pid_t pid = getpid();
char *pos = temp;

#ifndef WIN32
struct rusage usage;
getrusage(RUSAGE_SELF, &usage);
#endif /* !WIN32 */

STATS_LOCK();
pos += sprintf(pos, "STAT pid %u\r\n", pid);
pos += sprintf(pos, "STAT uptime %u\r\n", now);
pos += sprintf(pos, "STAT time %ld\r\n", now + stats.started);
pos += sprintf(pos, "STAT version " VERSION "\r\n");
pos += sprintf(pos, "STAT pointer_size %d\r\n", 8 * sizeof(void *));
#ifndef WIN32
pos += sprintf(pos, "STAT rusage_user %ld.%06ld\r\n", usage.ru_utime.tv_sec, usage.ru_utime.tv_usec);
pos += sprintf(pos, "STAT rusage_system %ld.%06ld\r\n", usage.ru_stime.tv_sec, usage.ru_stime.tv_usec);
#endif /* !WIN32 */
pos += sprintf(pos, "STAT curr_items %u\r\n", stats.curr_items);
pos += sprintf(pos, "STAT total_items %u\r\n", stats.total_items);
pos += sprintf(pos, "STAT bytes %llu\r\n", stats.curr_bytes);
pos += sprintf(pos, "STAT curr_connections %u\r\n", stats.curr_conns - 1); /* ignore listening conn */
pos += sprintf(pos, "STAT total_connections %u\r\n", stats.total_conns);
pos += sprintf(pos, "STAT connection_structures %u\r\n", stats.conn_structs);
pos += sprintf(pos, "STAT cmd_get %llu\r\n", stats.get_cmds);
pos += sprintf(pos, "STAT cmd_set %llu\r\n", stats.set_cmds);
pos += sprintf(pos, "STAT get_hits %llu\r\n", stats.get_hits);
pos += sprintf(pos, "STAT get_misses %llu\r\n", stats.get_misses);
pos += sprintf(pos, "STAT evictions %llu\r\n", stats.evictions);
pos += sprintf(pos, "STAT bytes_read %llu\r\n", stats.bytes_read);
pos += sprintf(pos, "STAT bytes_written %llu\r\n", stats.bytes_written);
pos += sprintf(pos, "STAT limit_maxbytes %llu\r\n", (uint64_t) settings.maxbytes);
pos += sprintf(pos, "STAT threads %u\r\n", settings.num_threads);
pos += sprintf(pos, "END");
STATS_UNLOCK();
out_string(c, temp);
return;
}

subcommand = tokens[SUBCOMMAND_TOKEN].value;

if (strcmp(subcommand, "reset") == 0) {
stats_reset();
out_string(c, "RESET");
return;
}

#ifdef HAVE_MALLOC_H
#endif /* HAVE_MALLOC_H */

#ifndef WIN32

#endif

if (strcmp(subcommand, "cachedump") == 0) {

char *buf;
unsigned int bytes, id, limit = 0;

if(ntokens < 5) {
out_string(c, "CLIENT_ERROR bad command line");
return;
}

id = strtoul(tokens[2].value, NULL, 10);
limit = strtoul(tokens[3].value, NULL, 10);

if(errno == ERANGE) {
out_string(c, "CLIENT_ERROR bad command line format");
return;
}

buf = item_cachedump(id, limit, &bytes);
write_and_free(c, buf, bytes);
return;
}

if (strcmp(subcommand, "slabs") == 0) {
int bytes = 0;
char *buf = slabs_stats(&bytes);
write_and_free(c, buf, bytes);
return;
}

if (strcmp(subcommand, "items") == 0) {
int bytes = 0;
char *buf = item_stats(&bytes);
write_and_free(c, buf, bytes);
return;
}

if (strcmp(subcommand, "detail") == 0) {
if (ntokens < 4)
process_stats_detail(c, ""); /* outputs the error message */
else
process_stats_detail(c, tokens[2].value);
return;
}

if (strcmp(subcommand, "sizes") == 0) {
int bytes = 0;
char *buf = item_stats_sizes(&bytes);
write_and_free(c, buf, bytes);
return;
}

out_string(c, "ERROR");
}

这个命令生成输出后,调用out_string(c, temp);写入socket
static void out_string(conn *c, const char *str) {
size_t len;

assert(c != NULL);

if (settings.verbose > 1)
fprintf(stderr, ">%d %s\n", c->sfd, str);

len = strlen(str);
if ((len + 2) > c->wsize) {
/* ought to be always enough. just fail for simplicity */
str = "SERVER_ERROR output line too long";
len = strlen(str);
}

memcpy(c->wbuf, str, len);
memcpy(c->wbuf + len, "\r\n", 3);
c->wbytes = len + 2;
c->wcurr = c->wbuf;

conn_set_state(c, conn_write);
c->write_and_go = conn_read;
return;
}

static void conn_set_state(conn *c, int state) {
assert(c != NULL);

if (state != c->state) {
if (state == conn_read) {
conn_shrink(c);
assoc_move_next_bucket();
}
c->state = state;
}
}

之后drive_machine()函数进入写入分支
case conn_write:
/*
* We want to write out a simple response. If we haven't already,
* assemble it into a msgbuf list (this will be a single-entry
* list for TCP or a two-entry list for UDP).
*/
if (c->iovused == 0 || (c->udp && c->iovused == 1)) {
if (add_iov(c, c->wcurr, c->wbytes) != 0 ||
(c->udp && build_udp_headers(c) != 0)) {
if (settings.verbose > 0)
fprintf(stderr, "Couldn't build response\n");
conn_set_state(c, conn_closing);
break;
}
}

static int add_iov(conn *c, const void *buf, int len) {
struct msghdr *m;
int leftover;
bool limit_to_mtu;

assert(c != NULL);

do {
m = &c->msglist[c->msgused - 1];

/*
* Limit UDP packets, and the first payloads of TCP replies, to
* UDP_MAX_PAYLOAD_SIZE bytes.
*/
limit_to_mtu = c->udp || (1 == c->msgused);

/* We may need to start a new msghdr if this one is full. */
if (m->msg_iovlen == IOV_MAX ||
(limit_to_mtu && c->msgbytes >= UDP_MAX_PAYLOAD_SIZE)) {
add_msghdr(c);
m = &c->msglist[c->msgused - 1];
}

if (ensure_iov_space(c) != 0)
return -1;

/* If the fragment is too big to fit in the datagram, split it up */
if (limit_to_mtu && len + c->msgbytes > UDP_MAX_PAYLOAD_SIZE) {
leftover = len + c->msgbytes - UDP_MAX_PAYLOAD_SIZE;
len -= leftover;
} else {
leftover = 0;
}

m = &c->msglist[c->msgused - 1];
m->msg_iov[m->msg_iovlen].iov_base = (void *)buf;
m->msg_iov[m->msg_iovlen].iov_len = len;

c->msgbytes += len;
c->iovused++;
m->msg_iovlen++;

buf = ((char *)buf) + len;
len = leftover;
} while (leftover > 0);

return 0;
}

case conn_write:
add_iov直接进入conn_mwrite状态。
case conn_mwrite:
switch (transmit(c)) {
case TRANSMIT_COMPLETE:
if (c->state == conn_mwrite) {
while (c->ileft > 0) {
item *it = *(c->icurr);
assert((it->it_flags & ITEM_SLABBED) == 0);
item_remove(it);
c->icurr++;
c->ileft--;
}
while (c->suffixleft > 0) {
char *suffix = *(c->suffixcurr);
if(suffix_add_to_freelist(suffix)) {
/* Failed to add to freelist, don't leak */
free(suffix);
}
c->suffixcurr++;
c->suffixleft--;
}
conn_set_state(c, conn_read);
} else if (c->state == conn_write) {
if (c->write_and_free) {
free(c->write_and_free);
c->write_and_free = 0;
}
conn_set_state(c, c->write_and_go);
} else {
if (settings.verbose > 0)
fprintf(stderr, "Unexpected state %d\n", c->state);
conn_set_state(c, conn_closing);
}
break;

case TRANSMIT_INCOMPLETE:
case TRANSMIT_HARD_ERROR:
break; /* Continue in state machine. */

case TRANSMIT_SOFT_ERROR:
stop = true;
break;
}
break;
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐